

Version 4.01.05

In 1969, Joseph H. Nook Jr. founded Nook Industries, Inc., intending to become a global supplier of Linear Motion components. Ball screws, both rolled and ground, were the cornerstone products in the early 1970's, putting Nook Industries on the map as a successful business and a trusted company.

Through the years, Nook Industries has served as a solid manufacturer of engineering products. From the very first ball screws of the 1960's and 1970's to the very latest technologies, Nook Industries strives to provide customers with the highest quality products and proven technology.

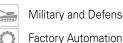
Companies from around the world depend on the quality products provided by Nook to ensure their success, which is why Nook Industries offers one of the most complete Linear Motion product lines, serving many markets with a wide range of products for each market segment.

The Precision Screw Group offers an extensive line of acme screws, ball screws, roller screws, ball splines, linear bearings, end supports, and custom end machining.

The Precision Actuator Group offers modular linear actuators, machine screw jacks, profile rail systems, electric cylinders, linear bearings, linear shafting, and control systems.

NOOK. MARKET SEGMENTS SERVED

Automotive Electronics


Transportation

Tire Manufacture

Entertainment Semiconductor

Military and Defense

Pulp & Paper

Pairing traditional and proven design with the latest technology, Nook Industries manufactures products that customers value. The expansion of product lines and the development of application specific components and engineered systems have propelled Nook Industries to the forefront

Nook Industries is committed to customer satisfaction and providing high-quality, high-value products that are delivered on time at a competitive price.

NOOK PARTNERS

58-161

Acme Screw Engineering	6-19
Acme Screw Assemblies	.20-33
Acme Screws and Nuts	.34-49
Trapezoidal Screw Engineering	.50-53
Trapezoidal Screws and Nuts	.54-57

Ball Screw Engineering	58-73
Ball Screw Assemblies	74-85
SRT Ball Screws and Nuts	86-109
XPR Ball Screws and Nuts	.110-123
SGT Ball Screws and Nuts	124-139
Mini Ball Screws and Nuts	140-143
Metric Ball Screw Engineering	144-149
MRT Ball Screws And Nuts	150-155
PMT Ball Screws And Nuts	156-161

NRS™ ROLLER **SCREWS**

162-183

Roller Screw Engineering. Roller Screws and Nuts .. EZRFTechnical Data .

EZZEMOUNT™ **END MACHINING AND BEARING SUPPORT** 185-200

200-213

Ball Spline Engineering 200-209. Ball Spline Technical Data ..210-213

QUALITY

HISTORY

Since 1969. Nook Industries, Inc. has relentlessly and continuously developed the capabilities and skills to deliver products of the highest quality. Knowledge of testing and design, coupled with this experience working with stringent customer requirements in aerospace, medical, energy and military applications has provided the background to be a reliable partner.

HIGHTECH QUALITY EXPERIENCE

When you select Nook Industries as a supplier, you can be assured that your product will be designed and tested to rigorous product planning. Pre-design activity includes understanding of customer requirements applied to predictive models, engineering calculations and linear modeling through prototype development, stereo-lithography samples of form, fit, and function that verify design criteria.

VALIDATION AND VERIFICATION

Through many years of rigorous development, Nook Industries has proven its designs and manufacturing processes against the most stringent standards and specifications. Design and process verification and validation tools are employed throughout the product life cycle.

CERTIFICATIONS

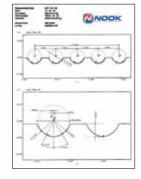
Nook Industries. Inc. is certified to ISO-9001-2008 Internationally Recognized Quality System. Nook also serves many customers in the Aerospace and Medical device markets and has complied with those Quality System Requirements as well.

ITAR

Nook Industries is registered with the Department Of State For International Traffic In Arms Compliance.

INSPECTION CAPABILITY

Laser Lead Measurement - Precise lead error gauging is utilized to validate processes to conform to Nook internal specifications and customer requirements.



Zeiss Roundness Measurement -

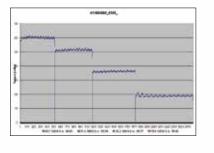
Critical to quality, characteristics such as roundness are monitored throughout the screw manufacturing process.

Zeiss Contour Readers - Prior to the start of any production run, thread form geometry is precisely measured to

stringent engineering specifications.

Metallurgical Lab - The metallurgical lab is capable of determining material composition from raw materials to final product. A micro

hardness and case depth inspection is a routine check that validates the heat treat process.



QUALITY TOOLS:

- Design for Six Sigma manufacturing
- D.O.E. (Design of Experiments)
- APQP (Advanced Product Quality Planning)
- DFMEA. PFEMA
- FEA (Finite Element Analysis)
- DVP&R (Design Verification Plan & Report)
- Reliability Testing
- Process validation to 21 CFR Part 82 (Medical Device)

TESTING

Torque Test Output Char Falluniar Ellistics

Efficiency Measurement - Nook Engineering has designed test machines to measure and validate screw assembly efficiency.

Torque Measurement - Preloaded ball screw assemblies are evaluated to determine compliance with engineering specifications utilizing a Dynamic Torque Testing Machine.

FUNCTIONAL TESTING

Nook test systems and engineered testing processes perform analysis, verification, and solidification of life, durability, and performance. The functional testing defines operating limits in specifications and helps set defined targets in Product Launch Process and Assurance Plans.

High Load Modular Test System 40.000 lb load - 100" CC

The engineered testing provides predictive tools, generates data for prognostics, and validates performance wear models. Life tests help determine performance in multiple operating conditions as well. Nook offers proof testing for customers developing new systems and actuators to help accelerate product release dates.

Convertible Test System 20,000 lb load - 100" CC

NOOK QUALITY EVOLUTION

DEVELOPED MANUFACTURING SYSTEMS

QUALITY SYSTEMS AND **ACCREDITATIONS**

SUPPLY CHAIN APPROVAL **PROCESS**

STATE OF THE ART MANAGEMENT SYSTEMS

APQP LAUNCH PROTOCOLS

SYSTEM AND PROCESS **PROTOCOLS**

ENGINEERING ANALYSIS AND PREDICTIVE TOOLS

CTQ/KPV ENGINEERING SPECIFICATION PROCESSES

RELIABILITY ENGINEERING AND **TESTING**

DVP&R AND TEST PLANNING

NOOK DESIGNED AND BUILT TEST MACHINES

CUSTOM ENGINEERED AND BUILT TEST INSTRUMENTATION

DESIGN AND TEST FOR FAULT **TOLERANCE AND PROGNOSTICS**

OVERLOAD/PROOF END OF LINE **TESTING**

CERTIFICATION TESTING

Nook acme screws are used in a variety of military applications

ACME SCREWS

ACME SCREW ENGINEERING6-19
Acme Screw
Materials & Manufacturing6-7
Glossary and Technical Data8-13
Application Example14-15
Column Strength and Critical Speed:
Acme Inch Screws16-17
Quick Reference Chart18-19
ACME SCREW ASSEMBLIES20-33
Modular Assemblies20-24
Motor Mounts & Handwheels25-29
Lubricant30
Reference Numbers System31
Twin-Lead Assemblies32-33
ACME SCREWS AND NUTS34-49
3/4 and 3/8 Inch Acme Screws34-55
1 Inch Acme Screws36-39
11/8 to 11/4 Inch Acme Screws40-41
1½ Inch Acme Screws42-43
1¾ to 2¼ Inch Acme Screws44-45
2½ to 3¾ Inch Acme Screws46-47
3¾ to 6 Inch Acme Screws48-49
TRAPEZOIDAL SCREW
ENGINEERING50-53
Quick Reference, Reference System50-51
Column Strength and Critical Speed:
Trapezoidal Screws52-53
TRAPEZOIDAL SCREWS AND
NUTS54-57
20mm to 26mm Trapezoidal Screws54-55
40mm to 65mm Trapezoidal Screws 56-57

MATERIALS & MANUFACTURING

Nook Industries manufactures precision acme screws by thread rolling, thread milling, or thread grinding processes. Each process produces high precision screws. Nook acme screw products feature centralizing thread forms for smooth, no-wedging performance.

ROLLED ACME SCREWS

Nook offers the largest selection of rolled acme screw sizes in the industry. Rolled thread screws are cost effective and are stocked for quick delivery.

MILLED ACME SCREWS

Milled thread screws allow more variety in journal machining, particularly where a design requires the journal O.D. to be larger than the screw major diameter.

GROUND ACME SCREWS

Ground thread screws offer higher lead accuracy for applications where positioning tolerances are extremely critical.

SCREW TYPE	MATERIAL	THREAD CLASS	LEAD ACCURACY	SCREW DIA.	SCREW LENGTHS
Rolled	Alloy	Centralizing 2C or Stub	± .0003"/" up to 2½" dia.	³ 4" to 6"	Limited only by material availability
	Stainless	Centralizing 2C or Stub	± .0003"/" up to 1½" dia.	3/4" to 11/2"	Limited only by material availability
Milled	Alloy	Centralizing 2C or 3C	± .002"/ft	3/4" to 3" (single starts)	up to 96"
_	Stainless	Centralizing 2C or 3C	± .002"/ft	3/4" to 3" (single starts)	up to 96"
Ground	Alloy	Centralizing 3C or 4C	± .0005"/ft	³⁄₄" to 4"	up to 120"
_	Stainless	Centralizing 2C or 3C	± .0005"/ft	¾" to 4"	up to 120"

	ACME & TRAPEZOIDAL ALLOY	STAINLESS STEEL
Screw Material	4140	300 Series
Minimum Hardness	200 Brinnel	170 Brinnel
Tensile Ultimate Stength	95,000 psi	85,000 psi
Finish	Black Oxide	Natural

Materials used in Nook acme nuts have been selected for low friction, minimum wear, long life, and clean operation.

BRONZE ACME & TRAPEZOIDAL NUT

Special high tensile bronze is selected for our smooth running, anti-wedging bronze nuts.

- Material: Nook Bronze
- Tensile Yield: 50,000 psi
- Tensile Ultimate: 65,000 psi
- Hardness: HB75
- Dynamic co-efficient of friction: 0.125 with Nook

Nut specifications can be found in the Quick References on pages 19 and 50. Flange and nut dimensions are listed with the appropriate screw data on pages 34-49 and 54-59.

PLASTIC ACME and TRAPEZOIDAL NUT

The high strength and inherent lubricity of plastic Acme and Trapezoidal nut material can result in product life that can equal or exceed conventional nut materials.

Plastic Nut

- Tensile Strength @70°F: 8,000 psi
- Compressive Strength @70°F: 16,000 psi
- PV Limit: 2,700 lubricated
- Co-efficient of friction: 0.10 lubricated

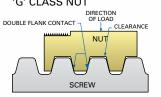
POWERAC™ FLANGES FOR BRONZE & PLASTIC NUTS

Made from carbon steel with black oxided finish. See page 11 for Mounting and Pinning Acme Nut flange installation instructions.

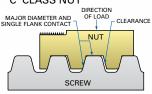
ACMETHREAD FORM TERMS

THREAD TYPES - The acme thread form, established over 100 years ago, replaced square thread screws, which had straight-sided flanks and were difficult to manufacture.

There are three main classes of Acme thread forms: General Purpose (G), Centralizing (C), and Stub Acme. The General Purpose and Centralizing thread forms have a nominal depth of thread of 0.50 × pitch and have a 29° included thread angle. Some Nook sizes have 40° included angle. Trapezoidal thread forms have a 30° included thread angle.

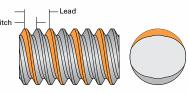

When compared to general-purpose thread forms, centralizing threads are manufactured with tighter tolerances and reduced clearance on the

Stub Acme threads follow the same basic design, but have a thread depth less than one half the pitch.

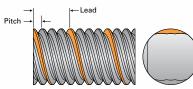

FIG. 1

SIDE LOADED CONVENTIONAL 'G' CLASS NUT

SIDE LOADED CENTRALIZED 'C' CLASS NUT


If an acme nut is side loaded with a radial load, a "G" class will "wedge" when the nut thread flanks come in contact with the screw thread flanks. To prevent wedging, less clearance and tighter tolerances are allowed between the major diameter of the nut and the major diameter of the screw.

CAUTION - Although a side load will not cause a centralizing thread to wedge, the nut is not designed to operate with a side load such as a pulley, drive belt, etc. See "Load Definition" section for further information. (See FIG. 1)


FIG. 2

Double Start (Lead = 2 x Pitch)

Four Start (Lead = 4 × Pitch)

LAND (MAJOR) DIAMETER - The outside diameter of the screw.

PITCH DIAMETER - On an acme screw, this diameter is approximately halfway between the land diameter and the root diameter. It is the diameter at which the thread thickness is equal to the space between threads.

ROOT (MINOR) DIAMETER - The diameter of the screw measured at the bottom of the thread.

PITCH - The axial distance between threads. Pitch is equal to the lead in a single start screw.

LEAD - The axial distance the nut advances in one revolution of the screw. The lead is equal to the pitch times the number of starts.

PITCH × STARTS = LEAD

NOTE: Nook Industries acme screw designations reference major diameter and effective turns per inch. For example: 3/4"-4 RH requires four turns for one inch of travel. A 3/4"-4 RH has 4 starts and a 0.062" pitch.

0.062" PITCH x FOUR STARTS = 0.250" LEAD

SCREW STARTS - The number of independent threads on the screw shaft; example one, two or four. (See FIG. 2 above)

LEAD ACCURACY - Lead accuracy is the difference between the actual distance traveled versus the theoretical distance traveled based on lead. For example: A screw with a 0.5 inch lead and 0.004 inch per foot lead accuracy rotated 24 times theoretically moves the nut 12 inches.

(24 Revolutions \times .500 inches per revolution = 12.000 inches of

With a Lead accuracy of .0003"/inch, actual travel could be from 11.996 to 12.004 inches.

Refer to the listings in the design guide for the lead accuracy of a particular screw.

POWER•AC**

ACME SCREW ENGINEERING

GLOSSARY AND TECHNICAL DATA continued

MATCHED LEAD - When multiple screws are used to move a load with precise synchronicity, screws of similar lead accuracy can be factory selected and supplied as sets. Consult factory for matched lead set tolerances.

STRAIGHTNESS - Although PowerAc™ Acme Screws are manufactured from straight, cylindrical material, internal stresses may cause the material to bend or yield.

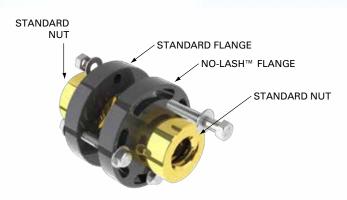
When ordering random lengths or cut material without end machining, straightening is recommended. Handling or machining of screws can also cause the material to bend or yield. Before, during and after machining, additional straightening is required. When ordering screws with machined ends from Nook Industries, the following straightness tolerances can be expected:

PowerAc™ Rolled and Milled Acme Screws are straight within 0.010 inch/foot and will not exceed 0.030 inch in any 6-foot section, when shipped from the factory.

PowerAc™ Ground Acme Screws are straight within 0.001 inch/foot when shipped from the factory.

If tighter straightness tolerances are required, contact Nook Industries customer service.

LIFE - PowerAc[™] Acme Screws are manufactured from high quality materials with excellent dynamic properties. Because of the variable effects of friction, lubrication and cleanliness, a specific life cannot be predicted. Proper lubrication, regular maintenance, and operation within specified limits will extend the life of PowerAc™ Acme Screws.


EFFICIENCY - Efficiency of PowerAc[™] Acme Screw assemblies range from 15% to 85%. These efficiencies are dependent upon nut material, lubrication, lead and thread form. The efficiencies for each assembly are listed on the following pages.

BACKDRIVING - Normally, acme screws are used to convert rotary motion into linear motion. Backdriving is the result of the load pushing axially on the screw or nut to create rotary motion.

Generally, a nut with efficiency greater than 50% will have a tendency to backdrive. If a selflocking assembly is required, select a nut with efficiency below 35%.

CAUTION - Vibration can cause any acme screw assembly to creep or backdrive. When using lead screws, applications should be analyzed to determine the necessity of a brake, especially when the possibility of injury may occur.

FIG. 3 Adjustable backlash nut assembly

BACKLASH - Backlash (lash) is the relative axial clearance between a screw and nut without rotation of the screw or nut. Backlash information for PowerAc[™] Acme Screws and Nuts is listed within the data section. of this catalog. Lash will always increase with use. Nook Industries has developed several unique ways to reduce or remove the lash between

For screw diameters over 5% inch. PowerAcTM No-LashTM Flanges are available. The PowerAcTM No-LashTM Flange is identical to a standard flange except for slotted mounting holes. The backlash can be removed by using a nut with a PowerAcTM No-LashTM Flange in combination with a standard nut and flange. By rotating the slotted PowerAc™ No-Lash™ Flange and nut relative to the other, the thread in the second nut advances until the lash is reduced.

As the nuts wear and backlash increases, loosen the mounting bolts and readiust the PowerAc[™] No-Lash[™] Flange and nut until the lash is minimized (See FIG. 3)

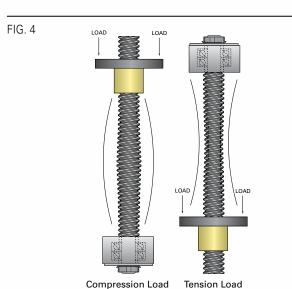
For a complete PowerAc[™] No-Lash[™] Flange assembly order 2 standard nuts, 1 standard flange and 1 No-Lash™ Flange. For example a ¾"-2 assembly requires the following:

2 - 20072 Standard Nuts

1 - 70262 Standard Flange

1 - 73262 No-Lash™ Flange

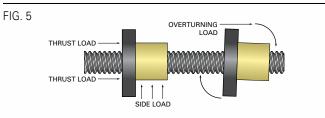
CAUTION - When the uncompensated lash is equal to or greater than 0.25 times the pitch, the assembly should be replaced.


LOAD DEFINITIONS

STATIC LOAD - The maximum thrust load - including shock - that should be applied to a non-moving PowerAc™ Acme nut assembly. Actual maximum static load may be reduced based on end machining and screw mounting hardware.

DYNAMIC LOAD - The maximum recommended thrust load which should be applied to the PowerAc[™] Acme screw and nut assembly while in motion.

PV LOAD - Any material which carries a sliding load is limited by heat buildup caused by friction. The factors that affect heat generation rate in an application are the pressure on the nut in pounds per square inch of contact area and the surface velocity in feet per minute at the major diameter. The product of these factors provides a measure of the severity of an application.


TENSION LOAD - A load that tends to "stretch" the screw. (See FIG. 4) **COMPRESSION LOAD** - A load that tends to "squeeze" the screw. (See FIG. 4)

THRUST LOAD - A load parallel to and concentric with the axis of the screw. (See FIG. 5)

OVERTURNING LOAD - A load that tends to rotate the nut radially around the longitudinal axis of the screw. (See FIG. 5)

SIDE LOAD - A load that is applied radially to the nut. (See FIG. 5)

DESIGN CONSIDERATIONS

3.375

4+

MOUNTING AND PINNING OF ACME FLANGE

Flanges must be secured to acme nuts. The preferred method of locking a flange to a nut is a pin or set screw parallel to the screw which intersects the flange/nut mounting thread. Because of the dissimilarity of materials, the hole may need to be milled, not drilled.

Alternatively, the flange may be drilled and tapped radially for a set screw. After assembly of the flange to the nut, spot drill the nut threads through the flange and install a dog point set screw from the flange O.D. into the nut O.D. threads. Avoid getting metal chips in the nut when drilling. (See FIG. 6 and 7 for pin size)

FIG. 6

FIG. 7	SET SCHEW SET SCHEW	
DIAMETER	DESCRIPTION	QTY
.75 to 1.0	#10 - 24 × 1/4 Set Screw	1
1.125 to 1.375	1/4 - 20 × 1/4 Set Screw	2
1.5 to 3.0	5/16 -18 × 1/2 Set Screw	2

Commercially available thread adhesives may be used for light load applications. Follow the manufacturers' recommendations to ensure a satisfactory bond. Avoid getting the adhesive onto the acme screw thread.

3/8 - 16 × 3/4 Set Screw

 $\frac{1}{2} \times 13 \times 1$ Set Screw

2

LUBRICATION - Proper lubrication must be provided to achieve satisfactory service life. Nook PowerAc™ lubricant (E-100 spray lube or PAG-1 grease) is recommended for applications using PowerAc™ nuts.

Lubrication intervals are determined by the application. It is required that screw assemblies are lubricated often enough to maintain a film of lubricant on the screw.

DRIVING TORQUE - Driving torque is the torque required to move a load and is calculated by multiplying the force needed by the "Torque to raise one lb" value listed in the technical data section for each screw and nut size.

EXAMPLE: To lift a 1,000 lb load using a 1"- 6 RH acme screw with plastic nut, 74 in lb of torque are required.

 $.074 \text{ in-lb/lb} \times 1000 \text{ lb} = 74 \text{ in-lb}$

POWER•AC** ACME SCREW ENGINEERING

DESIGN CONSIDERATIONS (Cont'd)

TEMPERATURE- With proper lubrication. PowerAc[™] Acme Screws with bronze nuts operate efficiently between15°F and 350°F, and plastic nuts between 15°F and 175°F. Consult the factory for low temperature applications.

END MACHINING - To obtain optimum performance of your acme screw assembly, it is recommended that the machining be performed at the Nook Industries factory. Screws may be purchased machined to your specifications or to standard end machining designs shown on pages 192-194.

EZZE-MOUNT™- Acme screws in operation generate an axial load and a radial load; therefore, end mounts must be designed to accommodate these loads. Nook Industries has designed precision end mounts to work specifically with acme screws. For a detailed description of these bearing supports, see pages 195-201. An EZZE-MOUNT™ can be shipped pre-assembled to a PowerAc[™] Acme Screw. For complete PowerAc[™] Acme Screw Assemblies refer to pages 20-29.

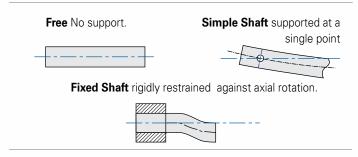
OPTIONAL SURFACE COATINGS - Consult Nook engineers for specific surface coatings for anti-corrosion and lubrication.

BOOTS AND BELLOWS - For contaminated environments, use of a boot FIG. 8 or metal cover to protect the acme screw assembly is recommended.

ACME SCREW SELECTION

The selection of the correct acme screw and nut for a particular application involves four interrelated factors. Before attempting to determine the acme screw and nut combination, the following values must be known:

- Axial load measured in pounds or newtons
- Speed measured in inches or millimeters per minute
- Length between bearings measured in inches or millimeters
- End fixity type

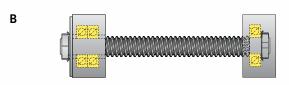

LOAD - The loads that need to be considered are the static loads, dynamic loads, reaction forces and any external forces affecting the screw. See Load definitions section on page 11 for details.

SPEED - The travel rate (linear speed) is the rpm at which the screw or nut is rotating multiplied by the lead of the screw.

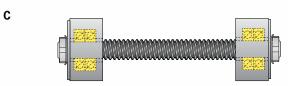
LENGTH - The unsupported length of the screw.

END FIXITY - End fixity refers to the method by which the ends of the screw are supported. The degree of end fixity is related to the amount of restraint of the ends of the screw. Examples of the three basic types of end fixity are:

Simple End fixity can be provided through a single bearing support.

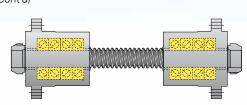

Multiple or spaced pairs of bearings are more rigid than a "Simple" support, but because of their compliance are not truly "Fixed".

A screw can be supported with different combinations of end fixity. (See FIG. 8)



One end with a Double Bearing EZZE-MOUNTTM, other end Free. Use Line A in reference to the charts shown on pages 16-17 and 52-

NOTE: Not recommended for any application other than short travels and slow speeds.


One end supported with a Double Bearing EZZE-MOUNTTM, other supported with a Single Bearing EZZE-MOUNT™. Use Line B in reference to the charts shown on pages 16-17 and 52-53.

Both ends supported with a Double Bearing EZZE-MOUNT™ Use Line C in reference to the charts shown on pages 16-17 and 52-53.

CAUTION: When using fixed bearing mounts on both ends, contact Nook Engineering to determine the mount-to-mount length tolerance of the final assembly.

D

Both ends supported with a Quad Bearing EZRF Ezze mount. Use Line D in reference to the charts shown on pages 16-17 and 52-53.

NOTE: When supporting a screw with two Quad Bearing EZRF Mounts, the screw is highly ridged and extra care should be taken to insure compliance in the assembly design.

CAUTION: When using fixed bearing mounts on both ends, contact Nook Engineering to determine the mount-to-mount length tolerance of the final assembly.

CRITICAL SPEED - Once the load, speed, length and end fixity are identified, the next factor to consider is the critical speed. The speed that excites the natural frequency of the screw is referred to as the critical speed. Resonance at the natural frequency of the screw will occur regardless of the screw orientation (vertical, horizontal etc.) or if the system is designed so the nut rotates about the screw. The critical speed will vary with the diameter, unsupported length, end fixity and rpm. Since critical speed can also be affected by shaft straightness and assembly alignment, it is recommended that the maximum speed be limited to 80% of the calculated critical speed. The theoretical formula to calculate critical speed in rpm is:

 $N = \frac{C_s \times 4.76 \times 10^6 \times d}{1.2}$

WHERE:

N = Critical Speed (rpm)

d = Root Diameter of Screw (inch)

L = Length Between Bearing Supports (inch)

 $C_s = 0.36$ for one end fixed, one end free

1.00 for both ends simple

1.47 for one end fixed, one end simple

2.23 for both ends fixed

The critical speed chart on page 17 is provided to guickly determine the minimum screw size applicable for Nook EZZE-MOUNT™ designs.

If the selected Acme screw does not meet critical speed criteria. consider the following options:

a) Increase screw lead and reduce rpm

b) Change end fixity (e.g. simple to fixed)

c) Increase screw diameter

COLUMN STRENGTH - When a screw is loaded in compression (see compression load definition on page 11), its limit of elastic stability can be exceeded and the screw will fail through bending or buckling.

The theoretical formula to calculate the column strength in pounds is:

$$P_{cr} = \frac{14.03 \times 10^6 \times F_c \times d^4}{1^2}$$

 $P_{cr} = Maximum Load (lb)$

 F_c = End Fixity Factor

0.25 for one end fixed, one end free

1.00 for both ends supported

2.00 for one end fixed, one end simple

4.00 for both ends rigid

d = Root Diameter of Screw (inch)

L = Distance between nut and load carrying bearing

The column strength chart on page 16 may be used to verify that the screw can carry the required load without buckling.

The charts show the theoretical limitations of each screw on a separate line. The lines are limited horizontally by the slenderness ratio and vertically by the maximum static capacity of the bronze nut. Actual load is limited by the maximum nut capacity.

If the selected screw does not meet compression load criteria, consider the following options:

- a) Change end fixity (e.g. simple to fixed)
- b) Design to use screw in tension
- c) Increase screw diameter

PV VALUE - For plastic nuts, the PV value needs to be checked (see the PV load definition page 11) The operating load values for the plastic nuts are based on a pressure of 1,250 lb per square inch. Any loads less than the operating load can be evaluated by using the following formula:

> **Actual Operating Load** Chart Operating Load

V is the relative speed between the nut and the screw in feet per minute. V can be calculated by using the following formula:

> Outside Dia. (in) Operating of the Screw Speed (rpm)

It is recommended that $P \times V$ be limited to values less than 2.700.

APPLICATION EXAMPLE

APPLICATION

Given the following requirements, select an acme screw for an application which uses Acme screws for an automatic part feeder on a machine.

Specifications:

- 5,000 lb load supported and guided on linear bearings moving horizontally
- 36" travel
- Complete 36" travel in 10 seconds
- Bearing Support Undecided
- Positioning accuracy ±½"

STEP 1

Find the axial force required to move load. The axial force is determined by multiplying the coefficient of friction of the guidance system by the load.

 $F = u \times N$

 μ = coefficient of friction of the guidance system

Using Nook linear bearings in this application;

u = Coefficient of Friction for lubricated Nook Linear Bearings

= .0013

N = Load = 5000 pounds

 $F = u \times N$

 $F = 0.013 \times 5000 \text{ lb}$

 $F = 6.5 \, lb$

Therefore:

The Axial Force the screw must produce to move the load is 6.5 lb

STEP 2

Find Average Travel Rate.

The average travel rate is determined by dividing travel distance by travel time.

V avg = D/t

D = distance = 36 inches

t = total time = 10 seconds

V avg = D/t

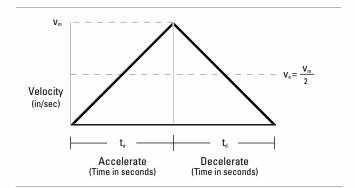
V avg = 36 in / 10 sec.

V avg = 3.6 in / sec. or 216 in/minute

Therefore, the average travel rate is 216 in/min.

STEP 3

Find Maximum Travel Rate. When considering critical speed, peak velocity should be used. Using a basic triangular motion profile (acceleration = deceleration with no constant velocity travel), the peak velocity equals twice the average velocity.


 $V peak = 2 \times V ava$

V avg = 3.6 in / sec. or 216 in/minute

V peak = $2 \times V$ avg.

V peak = 432 in/min

The Maximum Travel Rate is 432 in/min during the traverse of 36 inches in 10 seconds.

Determine total unsupported length. Total Travel is given as 36 inches, but extra screw length should be considered for travel nut, carriage, and or any extra screw length for over-travel. Based on the travel nut and attachment of the nut to the carriage in this application, it is determined an extra 4" of screw length will be required. (Refer to the dimensional information of the particular nut used)

L total = 36 in + 4 in = 40 inches

The total unsupported length to be used for critical speed and column loading calculations is 40 inches.

STEP 5

Determining end fixity. The layout of the application shows that adequate space is available to use a double bearing EZZE-MOUNT™ at each end. (See end fixity definitions on page 12) End Fixity = Type C

STEP 6

Select a screw based on the critical speed. Use previously determined values with the Critical Speed chart on page 17.

Max Travel Rate = 432 in/min

End Fixity = Type C

Length Between Bearing Supports = 40 inches

Based on the Critical Speed Chart, a 1"- 5 Acme Screw (1 inch diameter, 5 threads per inch) is selected.

STEP 7

Check Column Strength of screw. Use previously determined values with the Column Strength chart on page 16.

> Load = 6.4 pounds End Fixity = Type C

Length Between Bearing Supports = 40 inches

Based on the Column Strength Chart, the load is within the column strength of this screw.

NOTE: If this were a vertical application, the full 5,000 pound load would be used. Also, under high acceleration conditions, the inertia load must be determined and added to the total load for column considerations.

Check the PV Value. This relates the pressure load to the speed of the nut. First find the actual P value based on the calculation. Using the formulas from page 11:

× 1250 psi = 3.2 psi

Next the "V" value or maximum relative speed between the screw and nut is:

> Outside Dia. (in.) Operating of the Screw \times π \times Speed (rpm) 1" \times π \times 2160 rpm = 565 ft/per minute

This results in a PV value of 3.2 times 565 or 1,808 below the maximum recommended value of 2,700

STEP 9

Create a reference number for the assembly. See page 31 for Reference Number System Chart. The 1"- 5 Acme Screw is thread form code 105. The screw material is right-hand thread, alloy steel. The end code used for machining this screw is end code 17. The type of machining will be a Type 3 on both ends of screw to allow for mounting a double bearing.

EZZE-MOUNT™. One end will have a section to attach a coupling, the other will not. To determine the overall length of the assembly, add up the length of the ends plus the unsupported length:

One end Type 3K (drive end with keyway) = 3.65" One end Type 3N (no drive end) = 2.33" 40 inches between supports

Over-all length is 40'' + 3.65'' + 2.33'' = 45.98''

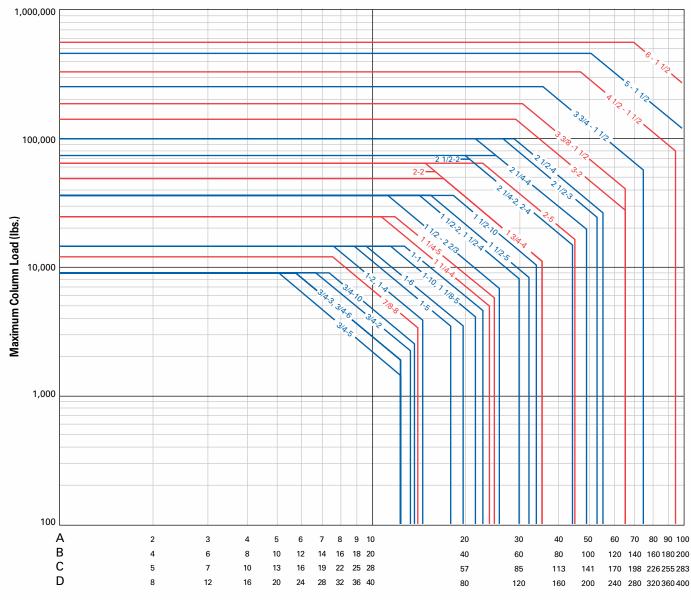
The Part List Includes:

One Plastic Acme Nut – 30105 One Steel Flange - 70275 EZZE-MOUNT™ Bearing blocks (2 reg'd) - EZM-3017

To receive an assembly of these components with the EZZE-MOUNT™, nut, and flange installed on the screw, the order reference number is:

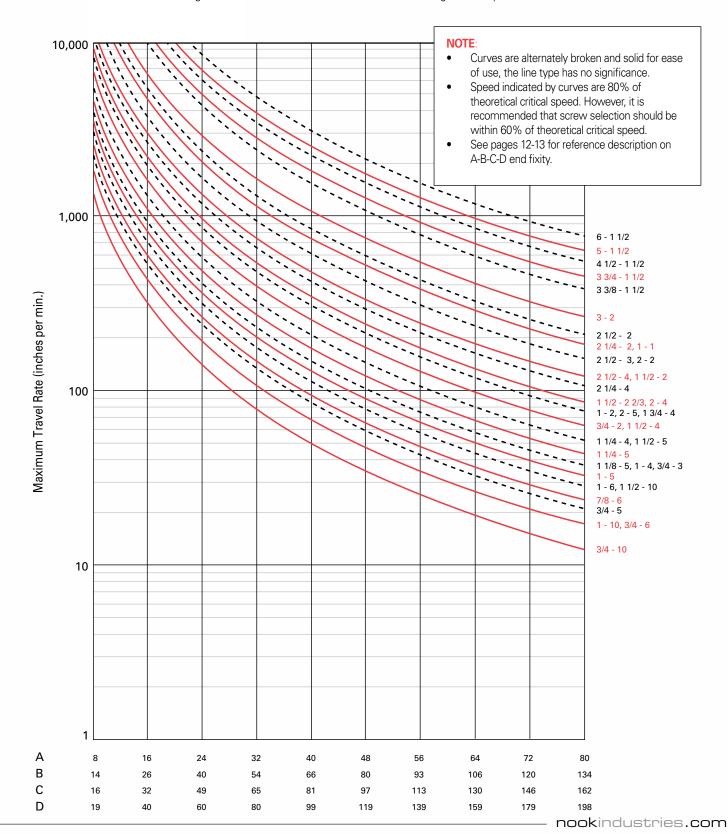
105 - RA/EK/EN/45.98/30105/FS

NOTE: The nut will be installed with the flange facing toward the first specified end. In this example, the EK end.

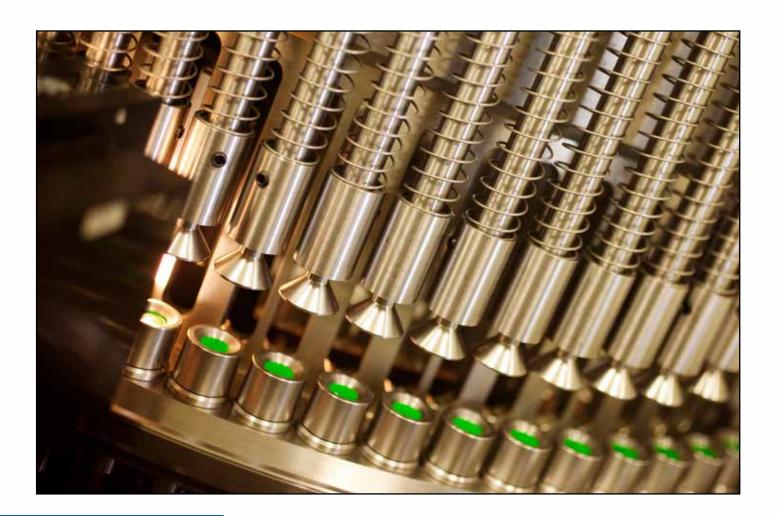


CRITICAL SPEED: ACME INCH SCREWS

COLUMN STRENGTH: ACME INCH SCREWS


TO USE THIS CHART: Find a point at which the maximum length between bearing support and acme nut intersects the maximum load. Be sure the screw selected is above and to the right of that point.

Acme Screws are limited by both Maximum Static Load and Slenderness Ratio. See pages 12-13 for reference description on A-B-C-D end fixity.

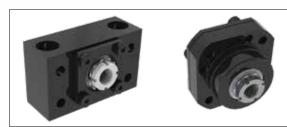

Maximum Length Between Bearings (in.)

TO USE THIS CHART: Determine maximum travel rate required. Determine screw length L. Find point at which travel rate and screw length intersect and select a screw above and to the right of that point.

NUT SELECTION

					DDC			PLASTIC					
					BRC	ONZE			PLAS				
SCREW SIZI	ES			Load	Rating	Torque to raise		Load F	Rating	Torque to raise		Back	
SIZE DIA Turns Per in	Lead	Pitch	Root Dia.	Static (lb)	Dynamic (lb)	1 lb (in·lb)	Efficiency %	Static lb	Dynamic lb	1 lb (in·lb)	Efficiency %	Lash (max)	Page ref
³ / ₄ - 2	.500	.125	.581	9,000	2,812	.129	62	1,406	1,406	.118	68	.010	34
³ / ₄ - 3	.333	.167	.537	9,000	2,812	.099	54	1,406	1,406	.089	60	.009	34
³ / ₄ - 5	.200	.200	.502	9,000	2,812	.080	40	1,406	1,406	.066	48	.009	34
3/4 - 6	.166	.166	.537	9,000	2,812	.073	36	1,406	1,406	.061	43	.008	34
3/4 - 10	.100	.100	.608	9,000	2,812	.064	25	1,406	1,406	.052	30	.007	34
⁷ /8 - 6	.166	.166	.661	12,250	3,828	.083	32	1,914	1,914	.068	39	.009	34
1 - 1	1.000	.100	.906	16,000	5,000	.231	69	2,500	2,500	.216	74	.008	47
1 - 2	.500	.250	.698	16,000	5,000	.139	57	2,500	2,500	.127	63	.010	36
1 - 4	.250	.250	.698	16,000	5,000	.105	38	2,500	2,500	.086	46	.010	36
1 - 5	.200	.200	.750	16,000	5,000	.094	34	2,500	2,500	.079	40	.009	38
1 - 6	.167	.167	.786	16,000	5,000	.089	30	2,500	2,500	.074	36	.009	38
1 - 10	.100	.100	.857	16,000	5,000	.078	20	2,500	2,500	.065	24	.008	38
11/8 - 5	.200	.200	.875	20,500	6,330	.100	32	3,165	3,165	.085	37	.010	40
11/4 - 4	.250	.250	.947	25,000	7,812	.117	34	3,906	3,906	.099	40	.011	40
11/4 - 5	.200	.200	.999	25,000	7,812	.114	28	3,906	3,906	.092	35	.010	40
11/2 - 2	.500	.250	1.196	36,000	11,250	.173	46	_	_	_	_	.012	42
11/2 - 22/3	.375	.375	1.066	36,000	11,250	.149	40	_	_	_	_	.010	42
11/2 - 4	.250	.250	1.196	36,000	11,250	.133	30	_	_	_	_	.010	42
11/2 - 5	.200	.200	1.249	36,000	11,250	.127	25		_	.—	_	.010	42
11/2 - 10	.100	.100	1.355	36,000	11,250	.110	15		_			.009	42
13/4 - 4	.250	.250	1.427	49,900	15,312	.153	26	_	_			.011	44
2 - 2	.500	.500	1.410	64,000	20,000	.199	40	_		_		.020	44
2 - 4	.250	.250	1.694	64,000	20,000	.166	24	_		_		.012	44
2 - 5	.200	.200	1.747	64,000	20,000	.159	20	_	_			.011	44
2 ¹ / ₄ - 2	.500	.500	1.684	81,000	25,312	.215	37	_		_		.021	44
21/4 - 4	.250	.250	1.944	81,000	25,312	.181	22	_		_		.012	44
21/2 - 2	.500	.500	1.908	100,000	31,250	.234	34	_		_		.012	46
21/2 - 3	.333	.333	2.106	100,000	31,250	.212	25	_		_		.013	46
21/2 - 4	.250	.250	2.193	100,000	31,250	.199	20	_		_		.012	46
3 - 2	.500	.500	2.410	144,000	45,000	.265	30	_		_	_	.016	46
3 ³ / ₈ - 1 ¹ / ₂	.666	.667	2.652	192,000	60,000	.312	34	_		_	_	.020	46
33/4- 11/2	.666	.667	3.083	260,000	81,000	.345	30	_		_	_	.020	48
41/2 - 11/2	.666	.667	3.782	320,000	100,000	.379	28	_		_	_	.022	48
5 - 1 ½	.666	.667	4.286	470,000	145,000	.398	26	_		_	_	.022	48
6 - 11/2	.666	.667	5.254	576,000	180,000	.474	22	_	_	_		.025	48

Acme Screw

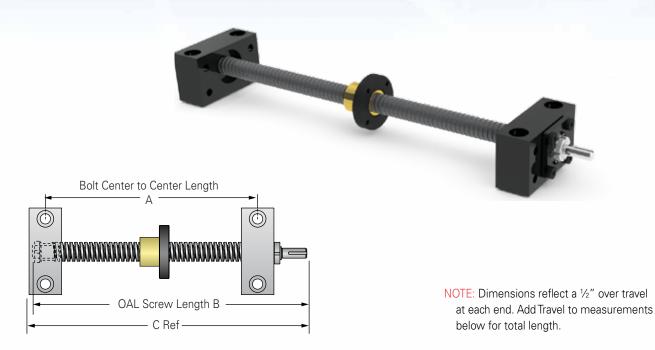

Bronze Nut

Flange

End Machining

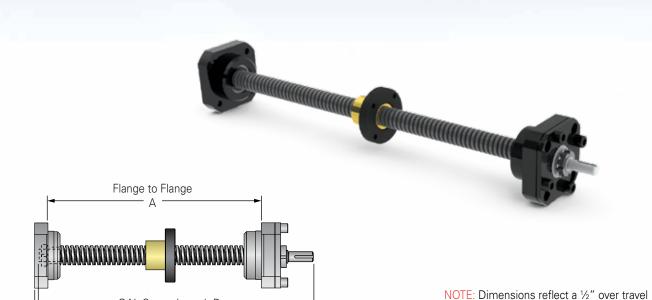
EZZE-MOUNT™ Bearing Mounts

EZZE-MOUNT™ Motor Mounts



Nook acme screws are used in a variety of printing applications

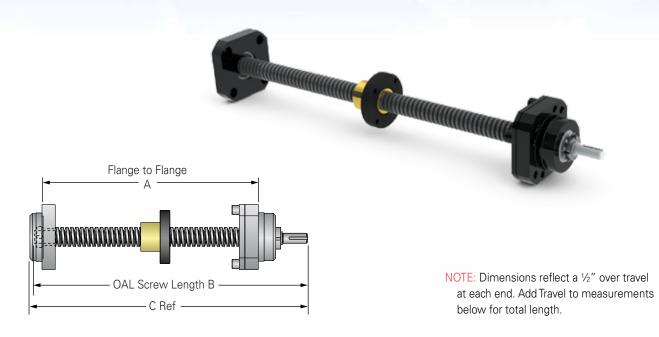
at each end. Add Travel to measurements


below for total length.

ACME SCREW AND NUT ASSEMBLIES UNIVERSAL MOUNTS

Dia-Turns Per In	A (in)	B (in)	C (in)	Page
³ / ₄ - 2	3.63	6.68	6.92	34
³ / ₄ - 3	3.63	6.68	6.92	34
3/4 - 5	3.63	6.68	6.92	34
³ / ₄ - 6	3.63	6.68	6.92	34
3/4 - 10	3.63	6.60	7.13	34
⁷ / ₈ - 6	3.88	6.85	7.38	34
1 - 1	4.22	8.14	8.25	36
1 - 2	4.18	7.45	7.84	36
1 - 4	4.18	7.45	7.84	36
1 - 5	4.18	7.45	7.84	38
1 - 6	4.18	7.45	7.84	38
1 - 10	4.22	8.14	8.25	38
11/8 - 5	4.28	8.14	8.25	40
11/4 - 4	4.47	8.39	8.50	40
11/4 - 5	4.69	8.84	9.14	40
11/2 - 2	5.24	9.84	10.10	42
1½ - 2 ² / ₃	5.24	9.39	9.69	42
11/2 - 4	5.24	9.84	10.10	42
1½ - 5	5.24	9.84	10.10	42
11/2 - 10	5.24	9.84	10.10	42

NOTE: Larger screw sizes with EZZE-MOUNT™ bearing mounts are available. Consult factory engineers for details.


FLANGE MOUNTS, PILOT FACING IN

- OAL Screw Length B -

Dia-Turns Per In	A (in)	B (in)	C (in)	Page
³/ ₄ - 2	3.57	6.48	6.69	34
³/4 - 3	3.57	6.48	6.69	34
³/ ₄ - 5	3.57	6.48	6.69	34
³/ ₄ - 6	3.57	6.48	6.69	34
³ / ₄ - 10	3.78	6.79	7.00	34
⁷ / ₈ - 6	4.03	7.04	7.25	34
1-1	4.27	7.79	8.00	36
1 - 2	4.09	7.27	7.47	36
1 - 4	4.09	7.27	7.47	36
1 - 5	4.09	7.27	7.47	38
1 - 6	4.09	7.27	7.47	38
1 - 10	4.27	7.79	8.00	38
11/8 - 5	4.27	7.79	8.00	40
11/4 - 4	4.52	8.04	8.25	40
11/4 - 5	4.72	8.57	8.87	40
11/2 - 2	5.26	9.57	9.83	42
1 ½ - 2 ½	5.27	9.12	9.42	42
11/2 - 4	5.26	9.57	9.83	42
11/2 - 5	5.26	9.57	9.83	42
11/2 - 10	5.26	9.57	9.83	42

ACME SCREW AND NUT ASSEMBLIES

FLANGE MOUNTS, PILOT FACING OUT

Dia-Turns Per In	A (in)	B (in)	C (in)	Page
3/4 - 2	3.69	6.48	6.69	34
3/4 - 3	3.69	6.48	6.69	34
3/4 - 5	3.69	6.48	6.69	34
3/4 - 6	3.57	6.48	6.69	34
3/4 - 10	3.72	6.79	7.00	34
⁷ / ₈ - 6	3.97	7.04	7.25	34
1 - 1	4.22	7.79	8.00	36
1 - 2	4.2	7.27	7.47	36
1 - 4	4.2	7.27	7.47	36
1 - 5	4.2	7.27	7.47	38
1 - 6	4.2	7.27	7.47	38
1 - 10	4.22	7.79	8.00	38
11/8 - 5	4.22	7.79	8.00	40
11/4 - 4	4.47	8.04	8.25	40
11/4 - 5	4.85	8.57	8.87	40
11/2 - 2	5.41	9.57	9.83	42
1½ - 2 ² / ₃	5.4	9.12	9.42	42
11/2 - 4	5.41	9.57	9.83	42
11/2 - 5	5.41	9.57	9.83	42
11/2 - 10	5.41	9.57	9.83	42

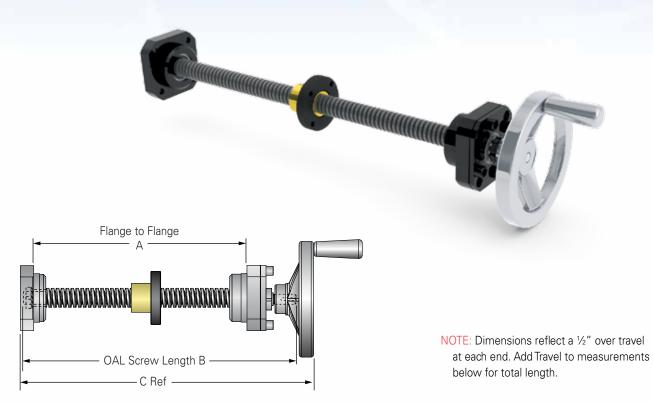
Dia - Turns per inch	A (in)	B (in)	C (in)	Size	Part No.	Page
³/ ₄ - 2	3.63	6.68	7.42	4"	H043*	34
³ / ₄ - 3	3.63	6.68	7.42	4"	H043*	34
³/ ₄ - 5	3.63	6.68	7.42	4"	H043*	34
³/ ₄ - 6	3.63	6.68	7.42	4"	H043*	34
3/4 - 10	3.63	6.60	7.31	4"	H044	34
7/8 - 6	3.88	6.85	7.81	6"	H064	34
1-1	4.22	8.14	9.00	6"	H065**	36
1 - 2	4.18	7.45	8.59	6"	H064	36
1 - 4	4.18	7.45	8.59	6"	H064	36
1 - 5	4.18	7.45	8.59	6"	H064	38

ASSEMBLIES WITH HANDWHEEL

UNIVERSAL MOUNTS

	Dia -Turns per inch	A (in)	B (in)	C (in)	Size	Part No.	Page
•	1 - 6	4.18	7.45	8.59	6"	H064	38
-	1 - 10	4.22	8.14	9.00	6"	H065**	38
	11//8 - 5	4.22	8.14	9.00	6"	H065**	40
	11/4 - 4	4.47	8.39	9.25	6"	H065**	40
	11/4 - 5	4.69	8.14	9.89	8"	H086	40
	11/2 - 2	5.24	9.84	10.85	8"	H088	42
	1 ½ - 2 ⅓	5.24	9.39	10.44	8"	H086	42
	11/2 - 4	5.24	9.84	10.85	8"	H088	42
	11/2 - 5	5.24	9.84	10.85	8"	H088	42
	11/2 - 10	5.24	9.84	10.85	8	H088	42

NOTE: Larger screw sizes with EZZE-MOUNT[™] bearing mounts are available. Consult factory engineers for details.

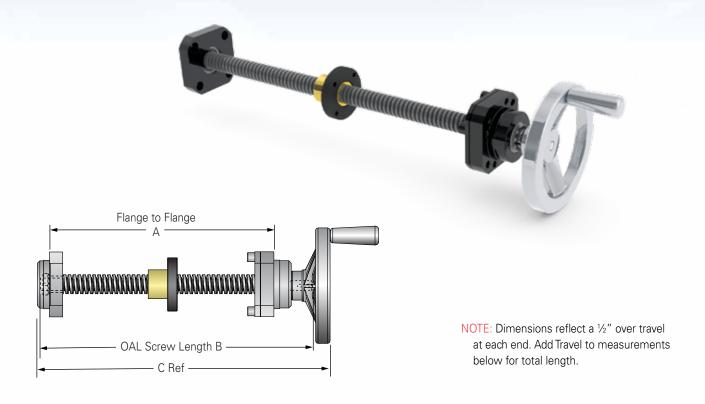


^{*} Indicates modified Type 3 end machining required

^{**} HO65 handwheel has the same outer dimensions as HO64 but different bore

ASSEMBLIES WITH HANDWHEEL

FLANGE MOUNTS, PILOT FACING IN



Dia -Turns per inch	A (in)	B (in)	C (in)	Size	Part No.	Page
³ / ₄ – 2	3.57	6.48	6.24	4"	H043*	34
³ / ₄ – 3	3.57	6.48	6.24	4"	H043*	34
3/4 – 5	3.57	6.48	6.24	4"	H043*	34
3/4 – 6	3.57	6.48	6.24	4"	H043*	34
3/4 - 10	3.78	6.79	7.55	4"	H044	34
7 /8 − 6	4.03	7.04	8.17	6"	H064	34
1 – 1	4.27	7.79	8.92	6"	H065 **	36
1 – 2	4.09	7.27	8.39	6"	H064	36
1 – 4	4.09	7.27	8.39	6"	H064	36
1 – 5	4.09	7.27	8.39	6	H064	38

Dia -Turns per inch	A (in)	B (in)	C (in)	Size	Part No.	Page
1 – 6	4.09	7.27	8.39	6"	H064	38
1 – 10	4.27	7.79	8.92	6"	H065**	38
11/8 – 5	4.27	7.79	8.92	6"	H065**	40
11/4 – 4	4.52	8.04	9.17	6"	H065**	40
11/4 – 5	4.72	8.57	9.92	8"	H086	40
11/2 - 2	5.26	9.57	10.88	8"	H088	42
1½ - 2¾	5.27	9.12	10.47	8"	H086	42
1½ - 4	5.26	9.57	10.88	8"	H088	42
1½ - 5	5.26	9.57	10.88	8"	H088	42
1½ - 10	5.26	9.57	10.88	8"	H088	42

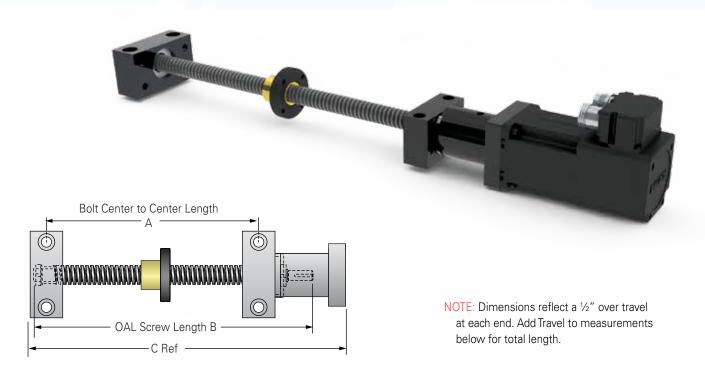
- * Indicates modified Type 3 end machining required
- ** HO65 handwheel has the same outer dimensions as HO64 but different bore

FLANGE MOUNTS, PILOT FACING OUT

Dia -Turns						
per inch	A (in)	B (in)	C (in)	Size	Part No.	Page
³ / ₄ – 2	6.48	3.69	7.24	4"	H043*	34
³ / ₄ - 3	6.48	3.69	7.24	4"	H043*	34
³ / ₄ – 5	6.48	3.69	7.24	4"	H043*	34
³ / ₄ - 6	6.48	3.69	7.24	4"	H043*	34
³ / ₄ – 10	6.79	3.72	7.55	4"	H044	34
⁷ / ₈ − 6	7.04	3.97	8.17	6"	H064	34
1-1	7.79	4.22	8.92	6"	H065**	36
1-2	7.27	4.20	8.39	6"	H064	36
1 – 4	7.27	4.20	8.39	6"	H064	36
1-5	7.27	4.20	8.39	6"	H064	38

Dia -Turns per inch	A (in)	B (in)	C (in)	Size	Part No.	Page
1-6	7.27	4.20	8.39	6"	H064	38
1 – 10	7.79	4.22	8.92	6"	H065**	38
11/8 - 5	7.79	4.22	8.92	6"	H065**	40
11/4 — 4	8.04	4.47	9.17	6"	H065**	40
11/4 - 5	8.57	4.85	9.92	8"	H086	40
11/2 - 2	9.57	5.41	10.88	8"	H088	42
1 ¹ / ₂ - 2 ² / ₃	9.12	5.4	10.47	8"	H086	42
11/2 - 4	9.57	5.41	10.88	8"	H088	42
11/2 - 5	9.57	5.41	10.88	8"	H088	42
11/2 - 10	9.57	5.41	10.88	8"	H088	42

- * Indicates modified Type 3 end machining required
- ** HO65 handwheel has the same outer dimensions as HO64 but different bore


NOTE: Dimensions reflect a 1/2" over travel

below for total length.

at each end. Add Travel to measurements

ASSEMBLIES WITH MOTOR MOUNTS

UNIVERSAL MOUNTS

Dia -Turns					
per inch	A (in)	B (in)	C (in)	Motor Mount	Page
³ / ₄ - 2	3.63	6.68	8.55	EZM-3012-34	34
³ / ₄ - 3	3.63	6.68	8.55	EZM-3012-23	34
³/4 - 5	3.63	6.68	8.55	EZM-3012-23	34
³ / ₄ - 6	3.63	6.68	8.55	EZM-3012-23	34
3/4 - 10	3.63	6.60	8.76	EZM-3015-34	34
⁷ /8 - 6	3.88	6.85	9.01	EZM-3015-34	34
1 - 1	4.22	8.14	10.18	EZM-2020-34	36
1 - 2	4.18	7.45	9.75	EZM-3017-34	36
1 - 4	4.18	7.45	9.75	EZM-3017-34	36
1 - 5	4.18	7.45	9.75	EZM-3017-34	38
1 - 6	4.18	7.45	9.75	EZM-3017-34	38
1 - 10	4.22	8.14	10.18	EZM-2020-34	38
11/8 - 5	4.28	8.14	10.18	EZM-2020-34	40
11/4 - 4	4.47	8.39	10.43	EZM-2020-34	40
11/4 - 5	4.69	8.84	11.13	EZM-3025-34	40
1½ -2	5.24	9.84	12.21	EZM-2030-34	42
1 ½ - 2 ⅓	5.24	9.39	11.68	EZM-3025-34	42
1½ - 4	5.24	9.84	12.21	EZM-2030-34	42
1½ - 5	5.24	9.84	12.21	EZM-2030-34	42
1½ - 10	5.24	9.84	12.21	EZM-2030-34	42

Flange to Flange

ASSEMBLIES WITH MOTOR MOUNTS

FLANGE MOUNT, PILOT FACING IN

OAL Screw Length B-

Dia -Turns	A (:-)	D (:-)	0 (:-)	Motor Mount	Dogo
per inch	A (in)	B (in)	C (in)		Page
³ / ₄ – 2	3.57	6.48	6.87	EZF-3012-34	34
³ / ₄ – 3	3.57	6.48	6.87	EZF-3012-23	34
$\frac{3}{4} - 5$	3.57	6.48	6.87	EZF-3012-23	34
$\frac{3}{4} - 6$	3.57	6.48	6.87	EZF-3012-23	34
³ / ₄ – 10	3.78	6.79	9.01	EZF-3015-34	34
⁷ / ₈ − 6	4.03	7.04	9.26	EZF-3015-34	34
1-1	4.27	7.79	9.94	EZF-2020-34	36
1-2	4.09	7.27	9.4	EZF-3017-34	36
1 – 4	4.09	7.27	9.4	EZF-3017-34	36
1 – 5	4.09	7.27	9.4	EZF-3017-34	38
1 – 6	4.09	7.27	9.4	EZF-3017-34	38
1 – 10	4.27	7.79	9.94	EZF-2020-34	38
11/8 - 5	4.27	7.79	9.94	EZF-2020-34	40
11/4 - 4	4.52	8.04	10.19	EZF-2020-34	40
11/4 - 5	4.72	8.57	10.87	EZF-3025-34	40
11/2 - 2	5.26	9.57	11.96	EZF-2030-34	42
1 ¹ / ₂ - 2 ² / ₃	5.27	9.12	11.42	EZF-3025-34	42
11/2 - 4	5.26	9.57	11.96	EZF-2030-34	42
11/2 - 5	5.26	9.57	11.96	EZF-2030-34	42
11/2 - 10	5.26	9.57	11.96	EZF-2030-34	42

NOTE: Larger screw sizes with EZZE-MOUNT[™] bearing mounts are available. Consult factory engineers for details.

ACME SCREW ASSEMBLIES LUBRICANTS

Prolong Acme Screw Assembly Reliability and Life

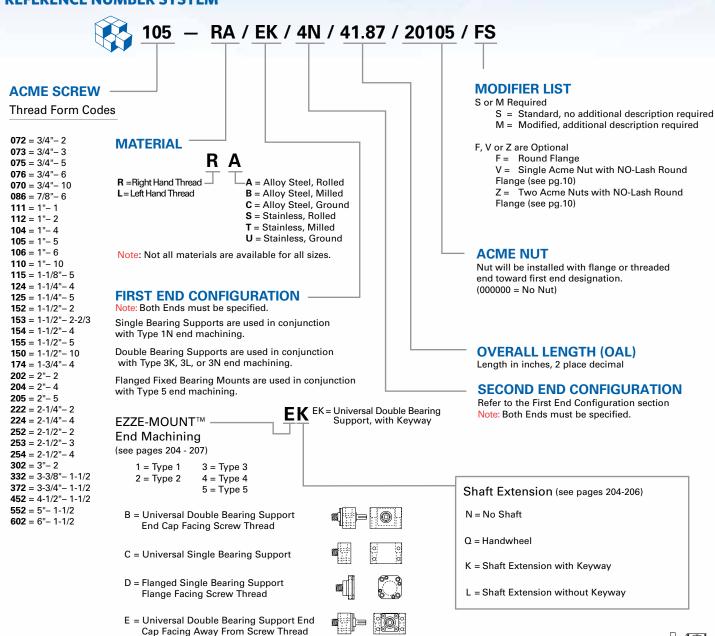
Proper lubrication is the key to continued performance and reliability of acme screw assemblies. Use E-100 spray and PAG-1 grease lubricants to maximize life of your acme screw assembly.

BENEFITS

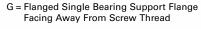
- Sheer Stability
- High Temperature Resistant
- Corrosion Protection
- Shelf Stable Water Resistant

Extreme Pressure Properties

Separation Resistant


Oil Viscosity

Product Name	NLGI Grade Number	Pene- tration (worked)	Dropping Point	Gelling Agent	Net Contents per Unit	cst @40°C	cst @100°C	Temp. Range	Quantity	Part No.	Total Weight
	2	285	550°C	Calcium	1 16	06	112	15°F to 400°F	1	NLU-1001	1.25 lb
PAG-1 Grease	2	200	220,0	Calciulli	1 lb	96	113	13°F (0 400°F	Case of 12	NLU-2001	18 lb
	2	285	550°C	Calcium	12 0=	06	110	15°F to 400°F	1	NLU-1002	1 lb
E-100 Spray	2	200	550°C	Calciulli	12 oz	96	113	13 F to 400 F	Case of 12	NLU-2002	15 lb



ACME SCREW ASSEMBLIES

REFERENCE NUMBER SYSTEM

- U = Universal Double Bearing Support with Motor Mount F = Flanged Double Bearing Support

Flange Facing Screw Thread

R = Flanged Fixed Bearing Support Flange Facing Screw Thread

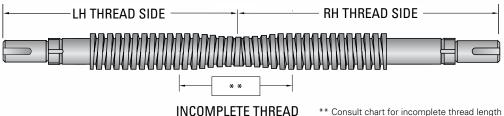
00 = No End Machining (Screw will be cut to desired

V = Flanged Fixed Bearing Support

Y = Flanged Double Bearing

Thread

XX = Custom Machining (Print or specified data must be provided).


TWIN-LEAD ACME SCREW ASSEMBLIES

Twin-lead acme screws offer dual opposing motion using a single drive system. These one-piece high performance acme screws are made from high alloy steel that is black oxided for protection and can be assembled with Nook PowerAc™ acme nuts, flanges and EZZE-MOUNT™ bearing supports (see pages 192-194) to form cost effective systems. Twin-lead acme screws can be used in molding machines, packaging equipment, food processing machinery, robotics, material handling equipment, tire manufacturing and assembly applications.

Twin-Lead screws stocked for delivery without machined ends are listed in the chart below. To order a twin-lead cut to a custom length and/or with machined ends, select a size from the chart below, determine OAL, LH and RH thread length, nut, flange and, if required, EZZE-MOUNT™ bearing support.

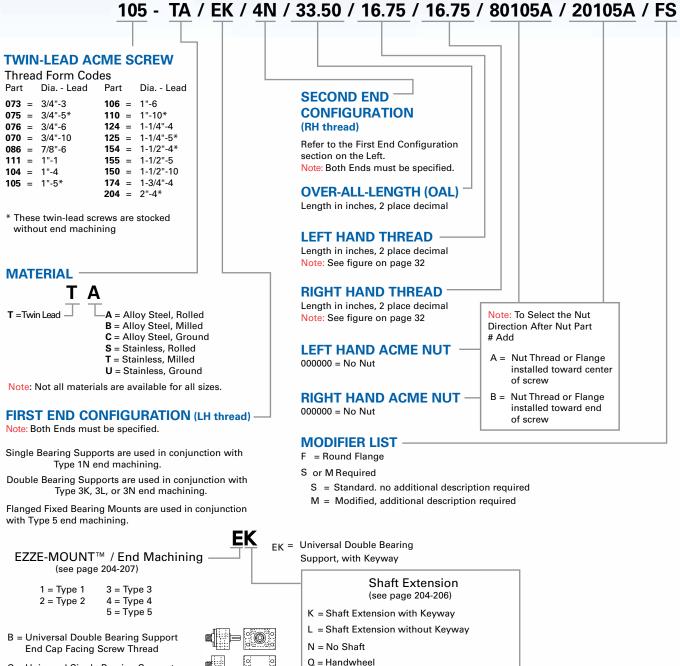
Consult the Twin-Lead Reference Number System on page 33 to complete your part number.

ICOMPLETE THREAD ** Consu	It chart for incomplete thread leng
---------------------------------	-------------------------------------

Screw Size Dia Lead	Root Dia (Min)	Max Overall Length	Max Usable LH/RH Thread	Incomplete Overlapping Thread Count	Pg
³ / ₄ - 3	.537	72	35.00	2.00	34
³ / ₄ - 5	.502	72	35.00	2.00	34
³/ ₄ - 6	.537	72	35.00	2.00	34
³ / ₄ - 10	.608	72	35.00	2.00	34
7/8 - 6	.661	72	35.00	2.00	34
1 - 1	.906	72	35.00	2.00	36
1 - 4	.689	72	34.75	2.50	36
1 - 5	.750	72	34.75	2.50	38
1 - 6	.786	72	34.75	2.50	38

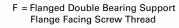
Size Dia-Lead	Dia (Min)	Max Overall Length	Max Usable LH/RH Thread	Overlapping Thread Count	Pg
1 - 10	857	72	35.00	2.00	38
11/4 - 4	.947	144	70.75	2.50	40
11/4 - 5	.999	144	70.75	2.50	40
1 ¹ / ₂ - 2 ² / ₃	1.066	144	70.50	3.00	42
11/2 - 4	1.196	144	70.75	2.50	42
11/2 - 5	1.249	144	70.75	2.50	42
11/2 - 10	1.355	144	71.00	2.00	42
13/4 - 4	1.427	144	70.50	3.00	44
2 - 4	1.694	144	70.50	3.00	44

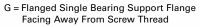
Incomplete



ACME SCREW ASSEMBLIES

POWER•AC**


REFERENCE NUMBER SYSTEM



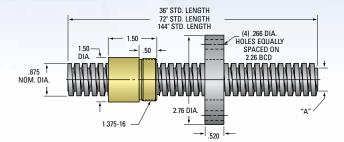
C = Universal Single Bearing Support

H = Flanged Double Bearing Support Flange Facing Away From Screw Thread

R = Flanged Fixed Bearing Support Flange Facing Screw Thread

with Motor Mount

U = Universal Double Bearing Support



00 = No End Machining (Screw will be cut to desired length)

XX = Custom Machining (Print or specified data must be provided).

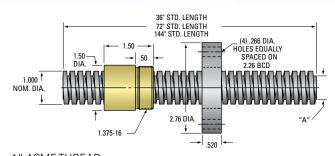
3/4" ACMETHREAD Lead Accuracy 0.0003 in/in

%" ACMETHREAD Lead Accuracy 0.0003 in/in

						ACM	E SCREV	V									BR	ONZE NU	JT					PLAS	TIC NUT				FLA	NGE
Screw Size	Part Nu RH	ımber LH	Length (in)	Material	Lead (in)	Pitch (in)	Starts	Threads per in	Lash (max axial)	"A" Dia (in)	Wt. (lb/ft)	Thread Code	Form		Part Nu RH		% Efficiency		Load Cap Dynamic		Wt. (lb)	Part Nu RH	umber LH	% Efficiency		Load Cap Dynamic			Std.	No- Wt. Lash™ (lb)
³/4 ″ – 2	11072**	_	36	1018	.500	.125	4	8	.010	.581	1.18	072	2C	200	072	_	62	.129	2,812	9,000	.23	30072	_	68	.118	1,406	1,406	.03	70262	73262 .78
	12072**	_	72	1018	.500	.125	4	8	.010	.581	1.18	072	2C	200	072	_	62	.129	2,812	9,000	.23	30072	_	68	.118	1,406	1,406	.03	70262	73262 .78
	13072**	_	144	1018	.500	.125	4	8	.010	.581	1.18	072	2C	200	072	_	62	.129	2,812	9,000	.23	30072	_	68	.118	1,406	1,406	.03	70262	73262 .78
³/₄ " - 3	11075	51073	36	4140	.333	.167	2	6	.009	.537	1.17	073	2C	200	073	80073	54	.099	2,812	9,000	.23	30073	_	60	.089	1,406	1,406	.03	70262	73262 .78
	12073	52073	72	4140	.333	.167	2	6	.009	.537	1.17	073	2C	200	073	80073	54	.099	2,812	9,000	.23	30073	_	60	.089	1,406	1,406	.03	70262	73262 .78
	13073	53073	144	4140	.333	.167	2	6	.009	.537	1.17	073	2C	200	073	80073	54	.099	2,812	9,000	.23	30073	_	60	.089	1,406	1,406	.03	70262	73262 .78
³/4 " - 5	11075	51075	36	4140	.200	.200	1	5	.009	.502	1.23	075	2C	200	075	80075	40	.080	2,812	9,000	.24	30075	_	48	.066	1,406	1,406	.03	70262	73262 .78
	91075	94075	36	SS	.200	.200	1	5	.009	.502	1.23	075	2C	200	075	80075	40	.080	2,812	9,000	.24	30075	_	48	.066	1,406	1,406	.03	70262	73262 .78
	12075	52075	72	4140	.200	.200	1	5	.009	.502	1.23	075	2C	200	075	80075	40	.080	2,812	9,000	.24	30075	_	48	.066	1,406	1,406	.03	70262	73262 .78
	92075	95075	72	SS	.200	.200	1	5	.009	.502	1.23	075	2C	200	075	80075	40	.080	2,812	9,000	.24	30075	_	48	.066	1,406	1,406	.03	70262	73262 .78
	13075	53075	144	4140	.200	.200	1	5	.009	.502	1.23	075	2C	200	075	80075	40	.080	2,812	9,000	.24	30075	_	48	.066	1,406	1,406	.03	70262	73262 .78
	93075	96075	144	SS	.200	.200	1	5	.009	.502	1.23	075	2C	200	075	80075	40	.080	2,812	9,000	.24	30075	_	48	.066	1,406	1,406	.03	70262	73262 .78
³/4 " - 6	11076	51076	36	4140	.166	.166	1	6	.008	.537	1.17	076	2C	200	076	80076	36	.073	2,812	9,000	.23	30076	40076	43	.061	1,406	1,406	.03	70262	73262 .78
	91076	94076	36	SS	.166	.166	1	6	.008	.537	1.17	076	2C	200	076	80076	36	.073	2,812	9,000	.23	30076	40076	43	.061	1,406	1,406	.03	70262	73262 .78
	12076	52076	72	4140	.166	.166	1	6	.008	.537	1.17	076	2C	200	076	80076	36	.073	2,812	9,000	.23	30076	40076	43	.061	1,406	1,406	.03	70262	73262 .78
	92076	95076	72	SS	.166	.166	1	6	.008	.537	1.17	076	2C	200	076	80076	36	.073	2,812	9,000	.23	30076	40076	43	.061	1,406	1,406	.03	70262	73262 .78
	13076	53076	144	4140	.166	.166	1	6	.008	.537	1.17	076	2C	200	076	80076	36	.073	2,812	9,000	.23	30076	40076	43	.061	1,406	1,406	.03	70262	73262 .78
	93076	96076	144	SS	.166	.166	1	6	.008	.537	1.17	076	2C	200	076	80076	36	.073	2,812	9,000	.23	30076	40076	43	.061	1,406	1,406	.03	70262	73262 .78
³⁄₄″– 10	11070	51070	36	4140	.100	.100	1	10	.007	.608	1.29	070	2C	200	070	80070	25	.064	2,812	9,000	.22	30070	_	30	.052	1,406	1,406	.03	70262	73262 .78
	91070	94070	36	SS	.100	.100	1	10	.007	.608	1.29	070	2C	200	070	80070	25	.064	2,812	9,000	.22	30070	_	30	.052	1,406	1,406	.03	70262	73262 .78
	12070	52070	72	4140	.100	.100	1	10	.007	.608	1.29	070	2C	200	070	80070	25	.064	2,812	9,000	.22	30070	_	30	.052	1,406	1,406	.03	70262	73262 .78
	92070	95070	72	SS	.100	.100	1	10	.007	.608	1.29	070	2C	200	070	80070	25	.064	2,812	9,000	.22	30070	_	30	.052	1,406	1,406	.03	70262	73262 .78
	13070	53070	144	4140	.100	.100	1	10	.007	.608	1.29	070	2C	200	070	80070	25	.064	2,812	9,000	.22	30070	_	30	.052	1,406	1,406	.03	70262	73262 .78
	93070	96070	144	SS	.100	.100	1	10	.007	.608	1.29	070	2C	200	070	80070	25	.064	2,812	9,000	.22	30070	_	30	.052	1,406	1,406	.03	70262	73262 .78
⅓″ − 6	11086	51086	36	4140	.166	.166	1	6	.009	.661	1.65	086	2C	200	086	80086	32	.083	3,828	12,250	.57	_	_	39	.068	1,914	1,914	.08	FLG8281	73275 .85
	12086	52086	72	4140	.166	.166	1	6	.009	.661	1.65	086	2C	200	086	80086	32	.083	3,828	12,250	.57	_	_	39	.068	1,914	1,914	.08	FLG8281	73275 .85
	13086	53086	144	4140	.166	.166	1	6	.009	.661	1.65	086	2C	200	086	80086	32	.083	3,828	12,250	.57	_	_	39	.068	1,914	1,914	.08	FLG8281	73275 .85

^{**} These screws are made with low carbon steel

^{*} Torque required to raise 1 lb

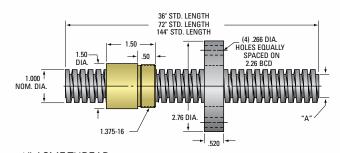


1 inch diameter

1" ACMETHREAD Lead Accuracy 0.0003 in/in

						ACM	E SCREW	V								BRO	NZE NUT	•					PLAS	TIC NU	JT			FL	ANGE
Screw Size	Part N RH	lumber LH	Length (in)	Material	Lead (in)	Pitch (in)	Starts	Threads per in	Lash (max axial)	"A" Dia (in)	Wt. (lb/ft)	Thread Code	Form	Part RH	Number LH	% Efficiency	Torque* (in·lb)	Load Ca Dynamic	pacity (lb) Static	Wt. (lb)	Part Numb				Load Cap Dynamic	acity (lb) Static	Wt. (lb)	Std.	No- Wt. Lash™ (lb)
1″- 1	11111	51111	36	4140	1.00	.100	10	10	.008	.906	2.38	111	Stub	20111	80111	69	.231	5,000	16,000	.46	30111 -	_	74	216	2,500	2,500	.07	FLG8281	73275 .85
	12111	52111	72	4140	1.00	.100	10	10	.008	.906	2.38	111	Stub	20111	80111	69	.231	5,000	16,000	.46	30111 -	_	74	216	2,500	2,500	.07	FLG8281	73275 .85
	13111	53111	144	4140	1.00	.100	10	10	.008	.906	2.38	111	Stub	20111	80111	69	.231	5,000	16,000	.46	30111 -	_	74	216	2,500	2,500	.07	FLG8281	73275 .85
1″- 2	11112	_	36	4140	.500	.250	2	4	.010	.698	2.22	112	2C	20112	_	57	.139	5,000	16,000	.52	30112 -	-	63	127	2,500	2,500	.08	FLG8281	73275 .85
	12112	_	72	4140	.500	.250	2	4	.010	.698	2.22	112	2C	20112	_	57	.139	5,000	16,000	.52	30112 -	_	63	127	2,500	2,500	.08	FLG8281	73275 .85
	13112	_	144	4140	.500	.250	2	4	.010	.698	2.22	112	2C	20112	_	57	.139	5,000	16,000	.52	30112 -	_	63	127	2,500	2,500	.08	FLG8281	73275 .85
1"-4	11104	51104	36	4140	.250	.250	1	4	.010	.698	2.22	104	2C	20104	80104	38	.105	5,000	16,000	.52	30104 -	_	46	086	2,500	2,500	.08	FLG8281	73275 .85
	91104	94104	36	SS	.250	.250	1	4	.010	.698	2.22	104	2C	20104	80104	38	.105	5,000	16,000	.52	30104 -	_	46	086	2,500	2,500	.08	FLG8281	73275 .85
	12104	52104	72	4140	.250	.250	1	4	.010	.698	2.22	104	2C	20104	80104	38	.105	5,000	16,000	.52	30104 -	_	46	086	2,500	2,500	.08	FLG8281	73275 .85
	92104	95104	72	SS	.250	.250	1	4	.010	.698	2.22	104	2C	20104	80104	38	.105	5,000	16,000	.52	30104 -	_	46	086	2,500	2,500	.08	FLG8281	73275 .85
	13104	53104	144	4140	.250	.250	1	4	.010	.698	2.22	104	2C	20104	80104	38	.105	5,000	16,000	.52	30104 -	_	46	086	2,500	2,500	.08	FLG8281	73275 .85
	93104	54104	144	SS	.250	.250	1	4	.010	.698	2.22	104	2C	20104	80104	38	.105	5,000	16,000	.52	30104 -	_	46	086	2,500	2,500	.08	FLG8281	73275 .85

^{1&}quot; ACMETHREAD SCREW ASSEMBLIES CONTINUED ON NEXT PAGE

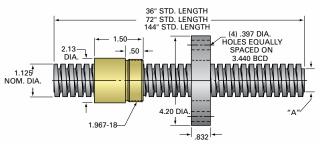


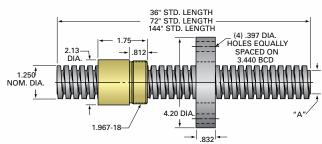
^{*} Torque required to raise 1 lb

1" ACMETHREAD Lead Accuracy 0.0003 in/in

						ACIV	IE SCRE	N								BR	ONZE NU	IT					PLAS	STIC NUT				FL	ANGE	
Screw Size	Part N RH	lumber LH	Length (in)	Material	Lead (in)	Pitch (in)	Starts	Threads per in	Lash (max axial)	"A" Dia (in)	Wt. (lb/ft)	Thread Code	Form	Part N RH	Number LH	% Efficien	Torque* cy (in·lb)		apacity (lb) c Static	Wt. (lb)	Part Nu RH		% Efficiency	Torque* (in·lb)	Load Cap Dynamic	oacity (lb) Static	Wt. (lb)	Std.	No- Lash™	VVt (lb)
1″- 5	11105	51105	36	4140	.200	.200	1	5	.009	.750	2.16	105	2C	20105	80105	34	.094	5,000	16,000	.50	30105	40105	40	.079	2,500	2,500	.07	FLG8281	73275	.8!
	91105	_	36	SS	.200	.200	1	5	.009	.750	2.16	105	2C	20105	_	34	.094	5,000	16,000	.50	30105	_	40	.079	2,500	2,500	.07	FLG8281	73275	.8
	12105	52105	72	4140	.200	.200	1	5	.009	.750	2.16	105	2C	20105	80105	34	.094	5,000	16,000	.50	30105	40105	40	.079	2,500	2,500	.07	FLG8281	73275	.8!
	92105	_	72	SS	.200	.200	1	5	.009	.750	2.16	105	2C	20105	_	34	.094	5,000	16,000	.50	30105	_	40	.079	2,500	2,500	.07	FLG8281	73275	.8!
	13105	53105	144	4140	.200	.200	1	5	.009	.750	2.16	105	2C	20105	80105	34	.094	5,000	16,000	.50	30105	40105	40	.079	2,500	2,500	.07	FLG8281	73275	.8
	93105	_	144	SS	.200	.200	1	5	.009	.750	2.16	105	2C	20105	_	34	.094	5,000	16,000	.50	30105	_	40	.079	2,500	2,500	.07	FLG8281	73275	.8!
1″- 6	11106	51106	36	4140	.167	.167	1	6	.009	.786	2.16	106	2C	20106	80106	30	.089	5,000	16,000	.49	_	_	_	_	_	_	.07	FLG8281	73275	.8
	91106	94106	36	SS	.167	.167	1	6	.009	.786	2.16	106	2C	20106	80106	30	.089	5,000	16,000	.49	_	_	_	_	_	_	.07	FLG8281	73275	.8
	12106	52106	72	4140	.167	.167	1	6	.009	.786	2.16	106	2C	20106	80106	30	.089	5,000	16,000	.49	_	_	_	_	_	_	.07	FLG8281	73275	.8
	92106	95106	72	SS	.167	.167	1	6	.009	.786	2.16	106	2C	20106	80106	30	.089	5,000	16,000	.49	_	_	_	_	_	_	.07	FLG8281	73275	.8
	13106	13106	144	4140	.167	.167	1	6	.009	.786	2.16	106	2C	20106	80106	30	.089	5,000	16,000	.49	_	_	_	_	_	_	.07	FLG8281	73275	.8
	93106	96106	144	SS	.167	.167	1	6	.009	.786	2.16	106	2C	20106	80106	30	.089	5,000	16,000	.49	_	_	_	_	_	_	.07	FLG8281	73275	.8
1"- 10	11110	51110	36	4140	.100	.100	1	10	.008	.857	2.10	110	2C	20110	80110	20	.078	5,000	16,000	.47	30110	_	24	.065	2,500	2,500	.07	FLG8281	73275	.8
	91110	_	36	SS	.100	.100	1	10	.008	.857	2.10	110	2C	20110	_	20	.078	5,000	16,000	.47	30110	_	24	.065	2,500	2,500	.07	FLG8281	73275	.8
	12110	52110	72	4140	.100	.100	1	10	.008	.857	2.10	110	2C	20110	80110	20	.078	5,000	16,000	.47	30110	_	24	.065	2,500	2,500	.07	FLG8281	73275	.8
	92110	_	72	SS	.100	.100	1	10	.008	.857	2.10	110	2C	20110	_	20	.078	5,000	16,000	.47	30110	_	24	.065	2,500	2,500	.07	FLG8281	73275	.8
	13110	53110	144	4140	.100	.100	1	10	.008	.857	2.10	110	2C	20110	80110	20	.078	5,000	16,000	.47	30110	_	24	.065	2,500	2,500	.07	FLG8281	73275	.8
	93110	_	144	SS	.100	.100	1	10	.008	.857	2.10	110	2C	20110	_	20	.078	5,000	16,000	.47	30110	_	24	.065	2,500	2,500	.07	FLG8281	73275	.8

^{*} Torque required to raise 1 lb





11/2 inch diameter 11/4 inch diameter

11/4" ACMETHREAD 1/4 Lead Accuracy 0.0003 in/in

11/4" ACMETHREAD Lead Accuracy 0.0003 in/in

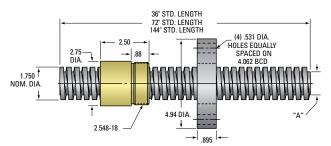
						ACM	E SCREW	1			7					BROI	NZE NUT						PLA	STIC NUT				FI	LANGE	
Screw Size	Part N	umber LH	Length (in)	Material	Lead (in)	Pitch (in)	Starts	Threads per in	Lash (max axial)	"A" Dia (in)	Wt. (lb/ft)	Thread Code	Form	Part N RH	umber LH	% Efficiency	Torque* (in·lb)	Load Cap Dynamic		Wt. (lb)	Part Nun RH		% Efficiency	Torque* (in·lb)	Load Car Dynamic		Wt. (lb)	Std.	No- Lash™	Wt. (lb)
11/8"- 5	11115	_	36	4140	.200	.200	1	5	.010	.875	2.80	115	2C	20115	_	32	.100	6,330	20,500	1.21	30115	_	_	_	_	_	_	FLG7572	73420	3.19
	12115	_	72	4140	.200	.200	1	5	.010	.875	2.80	115	2C	20115	_	32	.100	6,330	20,500	1.21	30115	_	_	_	_	_	_	FLG7572	73420	3.19
	13115	_	144	4140	.200	.200	1	5	.010	.875	2.80	115	2C	20115	_	32	.100	6,330	20,500	1.21	30115	_	_	_	_	_	_	FLG7572	73420	3.19
11/4"-4	11124	51124	36	4140	.250	.250	1	4	.011	.947	3.34	124	2C	20124	80124	34	.117	7,812	25,000	1.32	30124	_	_	_	_	_	_	FLG7572	73420	3.19
	91124	_	36	SS	.250	.250	1	4	.011	.947	3.34	124	2C	20124	80124	34	.117	7,812	25,000	1.32	30124	_	_	_	_	_	_	FLG7572	73420	3.19
	12124	52124	72	4140	.250	.250	1	4	.011	.947	3.34	124	2C	20124	80124	34	.117	7,812	25,000	1.32	30124	_	_	_	_	_	_	FLG7572	73420	3.19
	92124	_	72	SS	.250	.250	1	4	.011	.947	3.34	124	2C	20124	80124	34	.117	7,812	25,000	1.32	30124	_	_	_	_	_	_	FLG7572	73420	3.19
	13124	53124	144	4140	.250	.250	1	4	.011	.947	3.34	124	2C	20124	80124	34	.117	7,812	25,000	1.32	30124	_	_	_	_	_	_	FLG7572	73420	3.19
	93124	_	144	SS	.250	.250	1	4	.011	.947	3.34	124	2C	20124	80124	34	.117	7,812	25,000	1.32	30124	_	_	_	_	_	_	FLG7572	73420	3.19
11/4"- 5	11125	51125	36	4140	.200	.200	1	5	.010	.999	3.49	125	2C	20125	80125	28	.114	7,812	25,000	1.29	30125	40125	35	.092	3,906	3,906	.19	FLG7572	73420	3.19
	91125	94125	36	SS	.200	.200	1	5	.010	.999	3.49	125	2C	20125	80125	28	.114	7,812	25,000	1.29	30125	40125	35	.092	3,906	3,906	.19	FLG7572	73420	3.19
	12125	52125	72	4140	.200	.200	1	5	.010	.999	3.49	125	2C	20125	80125	28	.114	7,812	25,000	1.29	30125	40125	35	.092	3,906	3,906	.19	FLG7572	73420	3.19
	92125	95125	72	SS	.200	.200	1	5	.010	.999	3.49	125	2C	20125	80125	28	.114	7,812	25,000	1.29	30125	40125	35	.092	3,906	3,906	.19	FLG7572	73420	3.19
	13125	53125	144	4140	.200	.200	1	5	.010	.999	3.49	125	2C	20125	80125	28	.114	7,812	25,000	1.29	30125	40125	35	.092	3,906	3,906	.19	FLG7572	73420	3.19
	93125	96125	144	SS	.200	.200	1	5	.010	.999	3.49	125	2C	20125	80125	28	.114	7,812	25,000	1.29	30125	40125	35	.092	3,906	3,906	.19	FLG7572	73420	3.19

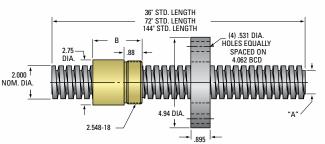
^{*} Torque required to raise 1 lb

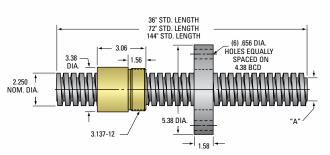
1½" ACMETHREAD
Lead Accuracy 0.0003 in/ir

						ACN	IE SCREV	V								BR	ONZE NU	Т					PLASTIC	NUT				FLANGE	
Screw Size	Part N RH	umber LH	Length (in)	Material	Lead (in)	Pitch (in)	Starts	Threads per in	Lash (max axial)	"A" Dia (in)	Wt. (lb/ft)	Thread Code	Form	Part Numb RH		% Efficiency	Torque* (in·lb)	Load Ca _l Dynamic	oacity (lb) Static	Wt. (lb)	Part Numbe RH LI		% Torqu ciency (in·lt		apacity (lb) c Static		Std.	No-Lash™	Wt. (lb)
11/2"- 2	11152	_	36	4140	.500	.250	2	4	.012	1.196	4.95	152	2C	20152	_	46	.173	11,250	36,000	1.38		-				_	FLG7572	73420	3.19
	12152	_	72	4140	.500	.250	2	4	.012	1.196	4.95	152	2C	20152	_	46	.173	11,250	36,000	1.38		_			_	_	FLG7572	73420	3.19
	13152	_	144	4140	.500	.250	2	4	.012	1.196	4.95	152	2C	20152	_	46	.173	11,250	36,000	1.38		_			_	_	FLG7572	73420	3.19
1 ½"- 2 ⅓	11153	51153	36	4140	.375	.375	1	22/3	.010	1.066	4.55	153	40°	20153 80	0153	40	.149	11,250	36,000	1.49		-				_	FLG7572	73420	3.19
	91153	_	36	SS	.375	.375	1	22/3	.010	1.066	4.55	153	40°	20153	_	40	.149	11,250	36,000	1.49		_			_	_	FLG7572	73420	3.19
	12153	52153	72	4140	.375	.375	1	22/3	.010	1.066	4.55	153	40°	20153 80	0153	40	.149	11,250	36,000	1.49		_			_	_	FLG7572	73420	3.19
	92153	_	72	SS	.375	.375	1	22/3	.010	1.066	4.55	153	40°	20153	_	40	.149	11,250	36,000	1.49		_			_	_	FLG7572	73420	3.19
	13153	53153	144	4140	.375	.375	1	22/3	.010	1.066	4.55	153	40°	20153 80	0153	40	.149	11,250	36,000	1.49		_			_	_	FLG7572	73420	3.19
	93153	_	144	SS	.375	.375	1	22/3	.010	1.066	4.55	153	40°	20153	_	40	.149	11,250	36,000	1.49		- .				—	FLG7572	73420	3.19
11/2"-4	11154	51154	36	4140	.250	.250	1	4	.010	1.196	4.99	154	2C	20154 80	0154	30	.133	11,250	36,000	1.53		_			_	_	FLG7572	73420	3.19
	91154	94154	36	SS	.250	.250	1	4	.010	1.196	4.99	154	2C	20154 80	0154	30	.133	11,250	36,000	1.53		-				_	FLG7572	73420	3.19
	12154	52154	72	4140	.250	.250	1	4	.010	1.196	4.99	154	2C	20154 80	0154	30	.133	11,250	36,000	1.53		_			_	_	FLG7572	73420	3.19
	92154	95154	72	SS	.250	.250	1	4	.010	1.196	4.99	154	2C	20154 80	0154	30	.133	11,250	36,000	1.53		- .			_	_	FLG7572	73420	3.19
	13154	53154	144	4140	.250	.250	1	4	.010	1.196	4.99	154	2C	20154 80	0154	30	.133	11,250	36,000	1.53		_ .			_	_	FLG7572	73420	3.19
	93154	96154	144	SS	.250	.250	1	4	.010	1.196	4.99	154	2C	20154 80	0154	30	.133	11,250	36,000	1.53		_		_	_	_	FLG7572	73420	3.19
11/2"- 5	11155	51155	36	4140	.200	.200	1	5	.010	1.249	4.90	155	2C	20155 80	0155	25	.127	11,250	36,000	1.35		_		_	_	_	FLG7572	73420	3.19
	91155	94155	36	SS	.200	.200	1	5	.010	1.249	4.90	155	2C	20155 80	0155	25	.127	11,250	36,000	1.35		_		_	_	_	FLG7572	73420	3.19
	12155	52155	72	4140	.200	.200	1	5	.010	1.249	4.90	155	2C	20155 80	0155	25	.127	11,250	36,000	1.35		- .				_	FLG7572	73420	3.19
	92155	95155	72	SS	.200	.200	1	5	.010	1.249	4.90	155	2C	20155 80	0155	25	.127	11,250	36,000	1.35		_		_	_	_	FLG7572	73420	3.19
	13155	53155	144	4140	.200	.200	1	5	.010	1.249	4.90	155	2C	20155 80	0155	25	.127	11,250	36,000	1.35		_		_	_	_	FLG7572	73420	3.19
	93155	96155	144	SS	.200	.200	1	5	.010	1.249	4.90	155	2C	20155 80	0155	25	.127	11,250	36,000	1.35		_		_	_	_	FLG7572	73420	3.19
11/2"- 10	11150	51150	36	4140	.100	.100	1	10	.009	1.355	5.47	150	2C	20150 80	0150	15	.110	11,250	36,000	1.28		-			_	_	FLG7572	73420	3.19
	12150	52150	72	4140	.100	.100	1	10	.009	1.355	5.47	150	2C	20150 80	0150	15	.110	11,250	36,000	1.28		-		_	_	_	FLG7572	73420	3.19
	13150	53150	144	4140	.100	.100	1	10	.009	1.355	5.47	150	2C	20150 80	0150	15	.110	11,250	36,000	1.28		_		_	_	T —	FLG7572	73420	3.19

^{*} Torque required to raise 1 lb






1¾ inch diameter 2 inch diameter 21/4 inch diameter

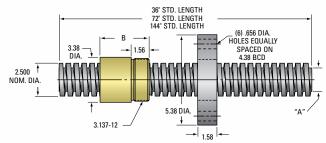
1¾" ACMETHREAD Lead Accuracy 0.0003 in/in

2" ACMETHREAD Lead Accuracy 0.0003 in/in

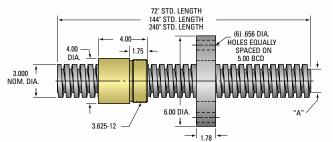
21/4" ACMETHREAD Lead Accuracy 0.0003 in/in

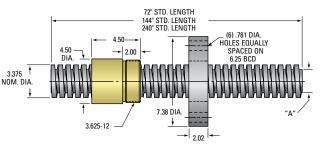
						ACM	E SCREV	V									BRO	ONZE NU	Т			PI	LASTIC N	UT			F	LANGE	
Screw Size	Part N RH	lumber LH	Length (in)	Material	Lead (in)	Pitch (in)	Starts	Threads per in	Lash (max axial)	"A" Dia (in)	Wt. (lb/ft)	Thread Code	Form	Pa RH	art Nur		% Efficiency	Torque* (in·lb)	Load Capacity (lb) Dynamic Static	Wt. (lb)	Part Numbe RH LH		Torque* y (in·lb)			Wt. (lb)	Std.	No-Lash [™]	Wt. (lb)
1¾"- 4	11174	51174	36	4140	.250	.250	1	4	.011	1.427	6.97	174	2C	2017	74	80174	26	.153	15,312 49,900	3.05		_	_	<u> </u>	_	_	FLG7573	73500	4.7
	12174	52174	72	4140	.250	.250	1	4	.011	1.427	6.97	174	2C	2017	74	80174	26	.153	15,312 49,900	3.05		_	_	_	_	_	FLG7573	73500	4.73
	13174	53174	144	4140	.250	.250	1	4	.011	1.427	6.97	174	2C	2017	74	80174	26	.153	15,312 49,900	3.05		_	_	_	_	_	FLG7573	73500	4.7
2"- 2	11202	_	36	4140	.500	.500	1	2	.020	1.410	8.09	202	40°	2020	02	_	40	.199	20,000 64,000	2.87		_	_	_	_	_	FLG7573	73500	4.73
(see table below for nut	12202	_	72	4140	.500	.500	1	2	.020	1.410	8.09	202	40°	2020	02	_	40	.199	20,000 64,000	2.87		_	_	_	_	_	FLG7573	73500	4.73
body length)	13202	_	144	4140	.500	.500	1	2	.020	1.410	8.09	202	40°	2020	02	_	40	.199	20,000 64,000	2.87		_	_	_	_	_	FLG7573	73500	4.73
2"-4	11204	51204	36	4140	.250	.250	1	4	.012	1.694	9.28	204	2C	2020	04	80204	24	.166	20,000 64,000	2.59		_	_	_	_		FLG7573	73500	4.7
(see table below for nut	12204	52204	72	4140	.250	.250	1	4	.012	1.694	9.28	204	2C	2020	04	80204	24	.166	20,000 64,000	2.59		_	_	_	_	_	FLG7573	73500	4.73
body length)	13204	53204	144	4140	.250	.250	1	4	.012	1.694	9.28	204	2C	2020	04	80204	24	.166	20,000 64,000	2.59		_	_	_	_	_	FLG7573	73500	4.73
2"- 5	11205	_	36	4140	.200	.200	1	5	.011	1.747	9.53	205	2C	2020	05	_	20	.159	20,000 64,000	2.53		_	_	_	_	_	FLG7573	73500	4.73
(see table below for nut	12205	_	72	4140	.200	.200	1	5	.011	1.747	9.53	205	2C	2020	05	_	20	.159	20,000 64,000	2.53		_	_	_	_	_	FLG7573	73500	4.73
body length)	13205	_	144	4140	.200	.200	1	5	.011	1.747	9.53	205	2C	2020	05	_	20	.159	20,000 64,000	2.53		_	_	_	_	_	FLG7573	73500	4.73
21/4"- 2	11222	_	36	4140	.500	.500	1	2	.021	1.684	10.58	222	40°	2022	22	_	37	.215	25,312 81,000	5.25		_	_	_	_	_	FLG7574	73540	9.88
	12222	_	72	4140	.500	.500	1	2	.021	1.684	10.58	222	40°	2022	22	_	37	.215	25,312 81,000	5.25		_	_	_	_	_	FLG7574	73540	9.88
	13222	_	144	4140	.500	.500	1	2	.021	1.684	10.58	222	40°	2022	22	_	37	.215	25,312 81,000	5.25		_	_	_	_	_	FLG7574	73540	9.88
21/4"-4	11224	_	36	4140	.250	.250	1	4	.012	1.944	11.29	224	2C	2022	24	_	22	.181	25,312 81,000	4.98		_	_	_	_	_	FLG7574	73540	9.88
	12224	_	72	4140	.250	.250	1	4	.012	1.944	11.29	224	2C	2022	24	_	22	.181	25,312 81,000			_	_	_	_	_	FLG7574	73540	9.88
	13224	_	144	4140	.250	.250	1	4	.012	1.944	11.29	224	2C	2022	24	_	22	.181	25,312 81,000			_		_	_	_	FLG7574	73540	9.88

[&]quot;B" NUT BODY LENGTH 2"-2 2.75 2"-4 3.47 2"- 5 2.75



end EZZE-MOUNT™ engineering machining bearing supports tools p. 204 p. 200 p. 16


^{*} Torque required to raise 1 lb


21/2 inch diameter 3 inch diameter 3% inch diameter

2½" ACMETHREAD Lead Accuracy 0.0003 in/in

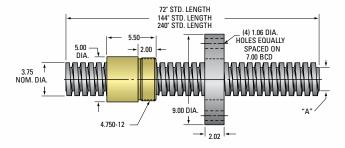
3" ACMETHREAD Lead Accuracy 0.0006 in/in

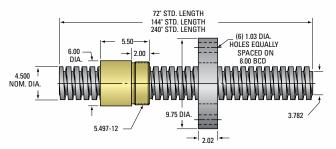
3%" ACMETHREAD Lead Accuracy 0.0006 in/in

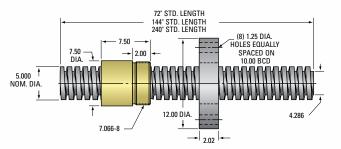
						ACM	E SCREV	V								В	RONZE N	UT			,	F	PLASTIC N	UT			FL	LANGE
Screw Size	Part Nu RH	ımber LH	Length (in)	Material	Lead (in)	Pitch (in)	Starts	Threads per in	Lash (max axial)	"A" Dia (in)	Wt. (lb/ft)	Thread Code	Form	Part Nu RH	ımber LH	% Efficiency	Torque* y (in·lb)	Load Cap Dynamic	pacity (lb) Static	Wt. (lb)	Part Number RH LH	% Efficiend		Load Capac Dynamic		Wt. (lb)	Std.	Wt. No-Lash™ (lb)
21/2"- 2	11252	_	36	4140	.500	.500	1	2	.012	1.908	13.41	252	40°	20252	_	34	.234	31,250	100,000	5.00		_	_	_	_	_	FLG7574	73540 9.88
(see table below for nut	12252	_	72	4140	.500	.500	1	2	.012	1.908	13.41	252	40°	20252	_	34	.234	31,250	100,000	5.00		_	_	_	_	-	FLG7574	73540 9.88
body length)	13252	_	144	4140	.500	.500	1	2	.012	1.908	13.41	252	40°	20252	_	34	.234	31,250	100,000	5.00		_	_	_	_	-	FLG7574	73540 9.88
21/2"-3	11253	_	36	4140	.333	.333	1	3	.013	2.106	14.38	253	2C	20253	_	25	.215	31,250	100,000	5.91		-	_	_	_	- [FLG7574	73540 9.88
(see table below for nut	12253	_	72	4140	.333	.333	1	3	.013	2.106	14.38	253	2C	20253	_	25	.215	31,250	100,000	5.91		_	_	_	_	-	FLG7574	73540 9.88
body length)	13253	_	144	4140	.333	.333	1	3	.013	2.106	14.38	253	2C	20253	_	25	.215	31,250	100,000	5.91		_	_	_	_	- [FLG7574	73540 9.88
21/2"-4	11254	_	36	4140	.250	.250	1	4	.012	2.193	14.89	254	2C	20254	_	20	.199	31,250	100,000	4.55		_	_	_	_	-1	FLG7574	73540 9.88
(see table below for nut	12254	_	72	4140	.250	.250	1	4	.012	2.193	14.89	254	2C	20254	_	20	.199	31,250	100,000	4.55		_	_	_	_	- [FLG7574	73540 9.88
body length)	13254	_	144	4140	.250	.250	1	4	.012	2.193	14.89	254	2C	20254	_	20	.199	31,250	100,000	4.55		_	_	_	_	- [FLG7574	73540 9.88
3″- 2	12302	_	72	4140	.500	.500	1	2	.016	2.410	19.96	302	2C	20302	_	30	.265	45,000	144,000	7.85		_	_	_	_	-1	70600	73302 13.83
	13302	_	144	4140	.500	.500	1	2	.016	2.410	19.96	302	2C	20302	_	30	.265	45,000	144,000	7.85		_	_	_	_	-	70600	73302 13.83
	10302	_	240	4140	.500	.500	1	2	.016	2.410	19.96	302	2C	20302	_	30	.265	45,000	144,000	7.85		_	_	_	_	-	70600	73302 13.83
3 ³ / ₈ "- 1 ¹ / ₂	12332	_	72	4140	.667	.667	1	11/2	.020	2.652	20.15	332	2G	20332	_	34	.312	60,000	192,000	11.62		_	_	_	_	- 1	70740	73332 11.62
	13332	_	144	4140	.667	.667	1	11/2	.020	2.652	20.15	332	2G	20332	_	34	.312	60,000	192,000	11.62		_	_	_	_	_	70740	73332 11.62
	10332	_	240	4140	.667	.667	1	11/2	.020	2.652	20.15	332	2G	20332	_	34	.312	60,000	192,000	11.62		_	_	_	_	-	70740	73332 11.62

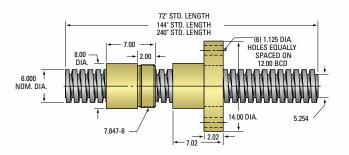
^{*} Torque required to raise 1 lb

[&]quot;B" NUT BODY LENGTH 21/2"-2 3.38 21/2"-3 4.25 **2**½"-4 3.38








3¾" ACMETHREAD Lead Accuracy 0.0006 in/in

4½" ACMETHREAD Lead Accuracy 0.0006 in/in

5" ACMETHREAD Lead Accuracy 0.0006 in/in

6" ACMETHREAD Lead Accuracy 0.0006 in/in

						ACM	E SCREW	1								BRONZE	NUT			ВІ	RONZE NUT	WITH IN	TEGRAL F	LANGE			FLANGE	
Screw Size	Part Nu RH	ımber LH	Length (in)	Material	Lead (in)	Pitch (in)	Starts	Threads per in	Lash (max axial)	"A" Dia (in)	Wt. (lb/ft)	Thread Code	Form	Part Number RH LH	% Efficienc	Torque*	Load Cap Dynamic	acity (lb) Static	Wt. (lb)	Part Numb	er % .H Efficienc		Load Cap Dynamic		Wt. (lb)	Std.	No-Lash™	VVt. (lb)
3¾"- 1½	12372	_	72	4140	.667	.667	1	11/2	.020	3.009	38.30	372	2G	20372 —	30	.345	81,000	260,000	16.89		- -	_	ĺ –	_	_	70775	73372	23.82
	13372	_	144	4140	.667	.667	1	11/2	.020	3.009	38.30	372	2G	20372 —	30	.345	81,000	260,000	16.89			_	_	_	_	70775	73372	23.82
	10372	_	240	4140	.667	.667	1	11/2	.020	3.009	38.30	372	2G	20372 —	30	.345	81,000	260,000	16.89		_	_	_	_	_	70775	73372	23.82
41/2"- 11/2	12452	_	72	4140	.667	.667	1	11/2	.022	3.782	45.00	452	2G	20452 —	28	.379	100,000	320,000	25.85		_	_	_	_	_	FLG3307	73452	26.00
	13452	_	144	4140	.667	.667	1	11/2	.022	3.782	45.00	452	2G	20452 —	28	.379	100,000	320,000	25.85			_	_	_	_	FLG3307	73452	26.00
	10452	_	240	4140	.667	.667	1	11/2	.022	3.782	45.00	452	2G	20452 —	28	.379	100,000	320,000	25.85			_	_	_	_	FLG3307	73452	26.00
5″- 1½	12552	_	72	4140	.667	.667	1	11/2	.022	4.286	57.50	552	2G	20552 —	26	.398	145,000	470,000	60.59		_	_	_	_	_	75000	73552	38.00
	13552	_	144	4140	.667	.667	1	11/2	.022	4.286	57.50	552	2G	20552 —	26	.398	145,000	470,000	60.59			_	_	_	_	75000	73552	38.00
	10552	_	240	4140	.667	.667	1	11/2	.022	4.286	57.50	552	2G	20552 —	26	.398	145,000	470,000	60.59			_	_	_	_	75000	73552	38.00
6"- 11/2	12602	_	72	4140	.667	.667	1	11/2	.025	5.254	87	602	2G	20602 —	22	.474	180,000	567,000	52.5	6954-1 -	_ 22	.474	180,000	567,000	100	_	_	_
	13602	_	144	4140	.667	.667	1	11/2	.025	5.254	87	602	2G	20602 —	22	.474	180,000	567,000	52.5	6954-1 -	_ 22	.474	180,000	567,000	100	_	_	_
	10602	_	240	4140	.667	.667	1	11/2	.025	5.254	87	602	2G	20602 —	22	.474	180,000	567,000	52.5	6954-1	_ 22	.474	180,000	567,000	100	_	_	_

^{*} Torque required to raise 1 lb

end EZZE-MOUNT™ engineering machining bearing supports tools p. 204 p. 200 p. 16

TRAPEZOIDAL SCREW ASSEMBLIES

With over forty years of experience manufacturing precision acme screws, Nook Industries has expanded the PowerAcTM offering to include metric lead screws providing design engineers a globally accepted product. Trapezoidal lead screws are available in many diameters, leads, and pitches. Trapezoidal screws use bronze or plastic nuts with optional steel flanges.

TRAPEZOIDAL SCREW AND NUT

Similar in construction and materials to PowerAc™ Inch Acme Screws and Nuts, the Trapezoidal thread form has been enhanced to include a centralizing thread form to prevent wedging and binding. See the PowerAc[™] technical data on pages 54-59 for additional screw and nut details.

Standard lead accuracy: is ±6.25µm / 25mm

Temperature Range: Plastic Nuts: -9° to +79° C

Bronze Nuts: -9° to +177° C

QUICK REFERENCE:

TRAPEZOIDAL SCREWS AND NUTS

NUT SELECTION

						BRONZE			PLASTIC		
Screw Sizes	Pitch (mm)	Lead (mm)	Starts	Root Dia. (mm)	Dynamic Load Rating	Torque to Raise 1 kN (N-m)	Efficiency %	Dynamic Load Rating	Torque to Raise 1 kN (N-m)	Efficiency %	Page ref
Tr 20 × 4	4	4	1	14.9	13790	1.818	35	6895	1.580	40	54
Tr 26 × 6	6	6	1	17.84	23304	2.469	39	11652	2.164	44	54
Tr 40 × 7	7	7	1	30.95	55160	3.503	32	5516	3.022	37	56
Tr 55 × 12	12	12	1	40.00	104287	5.131	37	_	_		56
Tr 65 × 12	12	12	1	50.02	145651	5.775	33	_	_	_	56

TRAPEZOIDAL SCREW ASSEMBLIES

REFERENCE NUMBER SYSTEM

904 - RA / EK / 4N / 1063 / 20904 / FS

LEAD SCREW

Thread Form Codes

ISO Dia. x Lead

903 = 20 x 4 904 = 26 x 6

905 = 40 x 7 906 = 55 x 12

907 = 65 x 12

MATERIAL

R A

R = Right Hand Thread

- **A** = Alloy Steel **B** = Alloy Steel, Milled

C = Alloy Steel, Ground

S = Stainless Steel, Rolled

T = Stainless Steel, Milled

U = Stainless Steel, Ground

Note: Not all materials are available for all sizes.

FIRST END CONFIGURATION

Note: Both Ends must be specified

Single Bearing Supports are used in conjunction with Type 1N end machining.

Double Bearing Supports are used in conjunction with Type 3K, 3L, or 3N end machining.

Flanged Fixed Bearing Mounts are used in conjunction with Type 5 end machining.

EZZE-MOUNT™ / End Machining (see page 204-207)

1 = Type 1 3 = Type 3

4 = Type 4 2 = Type 2

5 = Type 5

B = Universal Double Bearing Support End Cap Facing Screw Thread

C = Universal Single Bearing Support

D = Flanged Single Bearing Support Flange Facing Screw Thread

E = Universal Double Bearing Support End Cap Facing Away From Screw Thread

F = Flanged Double Bearing Support Flange Facing Screw Thread

G = Flanged Single Bearing Support Flange Facing Away From Screw Thread

H = Flanged Double Bearing Support Flange Facing Away From Screw Thread

MODIFIER LIST

S or M Required

F Optional

S = Standard, not additional description required

F = Round Flange

M = Modified, additional description required

TRAVEL NUT

Nut will be installed with flange or threaded end toward first end designation. 000000 = No Nut

Use standard part number found in the Technical Data Section for Metric ISO Trapezoidal Screws.

Example: 20904 = 26 x 6 ISO Trapezoidal Nut

OVERALL LENGTH (OAL)

Length in mm.

SECOND END CONFIGURATION

Refer to the First End Configuration section below Note: Both Ends must be specified.

EK EK = Universal Double Bearing Support, with Keyway

Shaft Extension (see page 204-206)

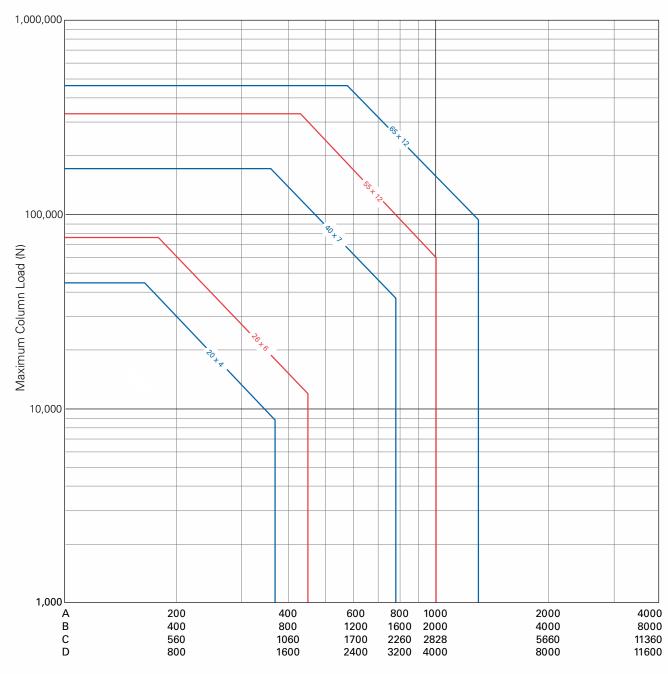
K = Shaft Extension with Keyway

L = Shaft Extension without Keyway

N = No Shaft

Q = Handwheel

R = Flanged Fixed Bearing Support Flange Facing Screw Thread

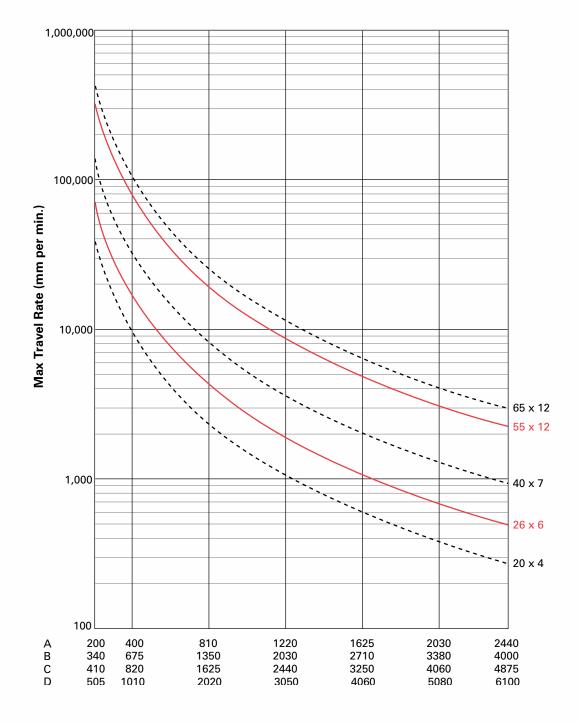


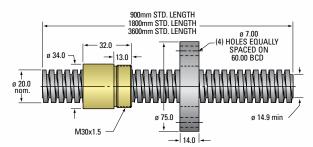
00 = No End Machining (Screw will be cut to desired length)

XX = Custom Machining (Print or specified data must be provided).

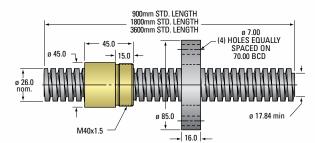
Metric Screws are limited by both Maximum Static Load and Slenderness Ratio. See pages 12-13 for reference description on A-B-C-D end fixity.

Metric to Inch Conversion: 1 Newton = .224 lbf 1mm = 0.039 in 1 N m = 8.85 in-lb


Maximum Length Between Bearings (mm)


CRITICAL SPEED: TRAPEZOIDAL SCREWS

Curves are alternately broken and solid for ease of use. The line type has no significance.

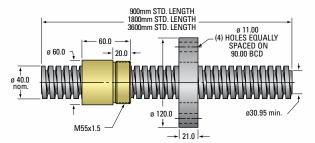

NOTE: Maximum Speed is limited to 80% of the calculated Critical Speed. See pages 12-13 for reference description on A-B-C-D end fixity.

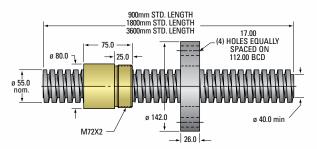
Metric to Inch Conversion: 1 Newton = .224 lbf 1mm = 0.039 in 1 N m = 8.85 in-lb

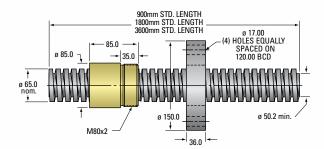
20mm Trapezoidal Thread Lead Accuracy ±6.25 μm/25mm

26mm Trapezoidal Thread Lead Accuracy ±6.25 μm/25mm

				TRAPEZO	DIDAL SCR	REW							BRONZE	NUT				P	PLASTIC NUT				FLAI	NGE
Dia × Lead	Part Nur RH	mber LH	Length (mm)	Material	Pitch (mm)	Starts	Dia (mm)	Thread Code	Wt. (kg/m)	Lash (mm)	Part Numbe	er % Efficiency	Torque to Raise 1 kN (N-m)		Load cap	pacity (N) Static	Part Number	% Efficiency	Torque to Raise 1 kN \ (N-m)	/Vt.	Load cap	pacity (N) Static	Part Number	Wt. (k
Tr 20×4	14903		900	4140	4	1	20	903	2.00	0.24	20903	.35	1.818	173		44,128	30903	40	1.580	0	6,895	6,895	72003	.39
	54903	_	900	SS	4	1	20	903	2.00	0.24	20903	.35	1.818	173	13,790	44,128	30903	40	1.580	11	6,895	6,895	72003	.39
	15903	_	1800	4140	4	1	20	903	2.00	0.24	20903	.35	1.818	173	13,790	44,128	30903	40	1.580	11	6,895	6,895	72003	.39
	55903	_	1800	SS	4	1	20	903	2.00	0.24	20903	.35	1.818	173	13,790	44,128	30903	40	1.580	11	6,895	6,895	72003	.39
	16903	_	3600	4140	4	1	20	903	2.00	0.24	20903	.35	1.818	173	13,790	44,128	30903	40	1.580	11	6,895	6,895	72003	.39
	56903	_	3600	SS	4	1	20	903	2.00	0.24	20903	.35	1.818	173	13,790	44,128	30903	40	1.580	11	6,895	6,895	72003	.39
Tr 26×6	14904	_	900	4140	6	1	26	904	3.20	0.30	20904	39	2.469	440	23,304	74,573	30904	44	2.164	79 1	11,652	11,652	72004	.54
	54904	_	900	SS	6	1	26	904	3.20	0.30	20904	39	2.469	440	23,304	74,573	30904	44	2.164	79 1	11,652	11,652	72004	.54
	15904	_	1800	4140	6	1	26	904	3.20	0.30	20904	39	2.469	440	23,304	74,573	30904	44	2.164	79 1	11,652	11,652	72004	.54
	55904	_	1800	SS	6	1	26	904	3.20	0.30	20904	39	2.469	440	23,304	74,573	30904	44	2.164	79 1	11,652	11,652	72004	.54
	16904	_	3600	4140	6	1	26	904	3.20	0.30	20904	39	2.469	440	23,304	74,573	30904	44	2.164	79 1	11,652	11,652	72004	.54
	56904	_	3600	SS	6	1	26	904	3.20	0.30	20904	39	2.469	440	23,304	74,573	30904	44	2.164	79 1	11,652	11,652	72004	.54






40mm diameter 65mm diameter

40mm Trapezoidal Thread Lead Accuracy ±6.25 μm/25mm

55mm Trapezoidal Thread Lead Accuracy ±6.25 µm/25mm

65mm Trapezoidal Thread Lead Accuracy ±6.25 µm/25mm

				TRAPEZO	DIDAL SCR	REW							BRONZE	NUT				P	LASTIC NU	Т			FLA	NGE
	Part Nur	mber			Pitch		Dia	Thread	Wt.		Part Numbe	%	Torque to Raise 1 kN	Wt.	Load car	pacity (N)	Part Number	%	Torque to Raise 1 kN	Wt.	Load cap	acity (N)	Part	
Dia × Lead	RH	LH	Length (mm)	Material	(mm)	Starts	(mm)	Code	(kg/m)	Lash (mm)	RH	Efficiency	/ (N-m)	(g)	Dynamic	Static	RH	Efficiency	(N-m)		Dynamic	Static	Number	Wt. (kg
Tr 40×7	14905	_	900	4140	7	1	40	905	8.16	0.32	20905	.32	3.503	900	55,160	176,512	30905	37	3.022	160	27,580	27,580	72005	1.40
	54905	_	900	SS	7	1	40	905	8.16	0.32	20905	.32	3.503	900	55,160	176,512	30905	37	3.022	160	27,580	27,580	72005	1.40
	15905	_	1800	4140	7	1	40	905	8.16	0.32	20905	.32	3.503	900	55,160	176,512	30905	37	3.022	160	27,580	27,580	72005	1.40
	55905	_	1800	SS	7	1	40	905	8.16	0.32	20905	.32	3.503	900	55,160	176,512	30905	37	3.022	160	27,580	27,580	72005	1.40
	16905	_	3600	4140	7	1	40	905	8.16	0.32	20905	.32	3.503	900	55,160	176,512	30905	37	3.022	160	27,580	27,580	72005	1.40
	56905	_	3600	SS	7	1	40	905	8.16	0.32	20905	.32	3.503	900	55,160	176,512	30905	37	3.022	160	27,580	27,580	72005	1.40
Tr 55×12	14906	_	900	4140	12	1	55	906	14.7	0.42	20906	.37	5.131	1900	104,287	333,718	_	_	_	_	_	_	72006	2.20
	15906	_	1800	4140	12	1	55	906	14.7	0.42	20906	.37	5.131	1900	104,287	333,718	_	_	_	_	_	_	72006	2.20
	16906	_	3600	4140	12	1	55	906	14.7	0.42	20906	.37	5.131	1900	104,287	333,718	_	_	_	_	_	_	72006	2.20
Tr 65×12	14907	_	900	4140	12	1	65	907	21.3	0.42	20907	.33	5.575	2100	145,651	466,084	_	_	_	_	_	_	72007	3.30
	15907	_	1800	4140	12	1	65	907	21.3	0.42	20907	.33	5.575	2100	145,651	466,084	_	_	_	_	_	_	72007	3.30
	16907	_	3600	4140	12	1	65	907	21.3	0.42	20907	.33	5.575	2100	145,651	466,084	_	_	_	_	_	_	72007	3.30

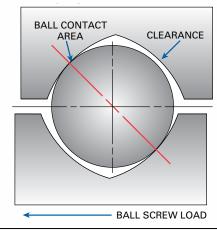
PRECISION BALL SCREW ASSEMBLIES

Ball screws and linear actuators are used to adjust solar trackers

BALL SCREWS

BALL SCREW ENGINEERING	60-8
Glossary and Technical Data	
Application Example	
Life Expectancy, Column Strength, Critica Speed: Inch Ball Screws	
Lubrication	
Ball Screw & Nut Assemblies	
Integral Safety Ball Nut	
Reference Number System	
Twin Lead Assemblies	
Reference Number System	82-8
SRT BALL SCREWS AND NUTS	84-10
0375-0125 to 0500-0500	86-8
0631-0200 to 0631-1000	88-8
0750-0200 to 0875-0200	90-9
1000-0250 to 1000-0500	92-9
1000-1000 to 1150-0200	94-9
1171-0413 to 1250-0500	
1500-0250 to 1500-0473	
1500-0500 to 1500-1875	
2250-0500 to 2250-1000	
2500-0250 to 2500-0500	
3000-0660 to 4000-1000	
6000-1000	
XPR BALL SCREWS AND NUTS	
0631-0200	

0750-0200 to 0875-0200	114-11
0750-0200 to 0875-0200 1000-0250	
1000-0250	116-11
1000-0250 1150-0200 to 1250-0200	116-11 118-1
1000-0250 1150-0200 to 1250-0200 1250-0500 to 1500-0250	116-11 118-11 120-12
1000-0250	116-11 118-1 120-12 122-12
1000-0250	116-11 118-11 120-12 122-12 124-13
1000-0250	116-11 118-1 120-12 122-12 124-13 126-12
1000-0250	116-11 118-12 120-12 122-12 124-13 126-12
1000-0250	116-11 118-1 ² 120-12 122-13 124-13 126-12 128-12
1000-0250	116-11 118-11 120-12 122-12 124-13 126-12 128-12 130-13
1000-0250	116-11 118-11 120-12 122-13 124-13 126-12 130-13 132-13
1000-0250	116-11 118-1 ⁻ 120-12 122-12 124-13 126-12 128-12 130-13 134-13 136-13
1000-0250	116-11 118-1' 120-12 122-12 124-13 126-12 128-12 130-13 134-13 138-13
1000-0250	116-11 118-11 120-12 122-12 124-13 126-12 128-12 130-13 134-13 136-13 138-13
1000-0250	116-11 118-11 120-12 122-12 124-13 126-12 128-12 130-13 134-13 136-13 138-13
1000-0250 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2250-0500 SGT BALL SCREWS AND NUTS 0631-0200 0750-0200 to 0875-0200 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2000-0400 2250-0500 to 2500-0250 MINI BALL SCREWS AND NUTS 6×1.25 to 14×3 METRIC BALL SCREW ENGINEERING Life Expectancy, Column Strength, Critical Speed: Metric Ball Screws	116-11 118-11 120-12 122-12 124-13 126-12 128-12 130-13 132-13 134-13 136-13 134-14 142-14
1000-0250 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2250-0500 SGT BALL SCREWS AND NUTS 0631-0200 0750-0200 to 0875-0200 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2000-0400 2250-0500 to 2500-0250 MINI BALL SCREWS AND NUTS 6×1.25 to 14×3 METRIC BALL SCREW ENGINEERING Life Expectancy, Column Strength, Critical Speed: Metric Ball Screws Reference Number System	116-11 120-12 122-12 122-13 126-12 128-12 130-13 130-13 136-13 136-13 140-14 142-14
1000-0250 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2250-0500 SGT BALL SCREWS AND NUTS 0631-0200 0750-0200 to 0875-0200 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2000-0400 2250-0500 to 2500-0250 MINI BALL SCREWS AND NUTS 6×1.25 to 14×3 METRIC BALL SCREW ENGINEERING Life Expectancy, Column Strength, Critical Speed: Metric Ball Screws	116-11 120-12 122-12 122-13 126-12 128-12 130-13 130-13 136-13 136-13 140-14 142-14
1000-0250 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2250-0500 SGT BALL SCREWS AND NUTS 0631-0200 0750-0200 to 0875-0200 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2000-0400 2250-0500 to 2500-0250 MINI BALL SCREWS AND NUTS 6×1.25 to 14×3 METRIC BALL SCREW ENGINEERING Life Expectancy, Column Strength, Critical Speed: Metric Ball Screws Reference Number System MRT BALL SCREWS AND NUTS 16×5 to 25×5	116-11 120-12 122-12 122-13 126-12 128-12 130-13 130-13 136-13 136-13 140-14 142-14 145-14 145-14 145-15 150-18
1000-0250 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2250-0500 SGT BALL SCREWS AND NUTS 0631-0200 0750-0200 to 0875-0200 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2000-0400 2250-0500 to 2500-0250 MINI BALL SCREWS AND NUTS 6×1.25 to 14×3 METRIC BALL SCREW ENGINEERING Life Expectancy, Column Strength, Critica Speed: Metric Ball Screws Reference Number System MRT BALL SCREWS AND NUTS	116-11 120-12 122-12 122-13 126-12 128-12 130-13 130-13 136-13 136-13 140-14 142-14 145-14 145-14 145-15 150-18
1000-0250 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2250-0500 SGT BALL SCREWS AND NUTS 0631-0200 0750-0200 to 0875-0200 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2000-0400 2250-0500 to 2500-0250 MINI BALL SCREWS AND NUTS 6×1.25 to 14×3 METRIC BALL SCREW ENGINEERING Life Expectancy, Column Strength, Critical Speed: Metric Ball Screws Reference Number System MRT BALL SCREWS AND NUTS 16×5 to 25×5	116-11 120-12 122-12 122-13 126-12 128-12 130-13 130-13 136-13 136-13 140-14 142-14 145-14 145-14 150-18 150-18
1000-0250 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2250-0500 SGT BALL SCREWS AND NUTS 0631-0200 0750-0200 to 0875-0200 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2000-0400 2250-0500 to 2500-0250 MINI BALL SCREWS AND NUTS 6×1.25 to 14×3 METRIC BALL SCREW ENGINEERING Life Expectancy, Column Strength, Critical Speed: Metric Ball Screws Reference Number System MRT BALL SCREWS AND NUTS 16×5 to 25×5 40×10 to 40×40	116-11 120-12 122-12 122-13 126-12 128-12 130-13 130-13 136-13 136-13 140-14 142-14 145-14 145-14 150-18 150-18 150-18
1000-0250 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2250-0500 SGT BALL SCREWS AND NUTS 0631-0200 0750-0200 to 0875-0200 1150-0200 to 1250-0200 1250-0500 to 1500-0250 1500-0500 to 2000-0400 2250-0500 to 2500-0250 MINI BALL SCREWS AND NUTS 6×1.25 to 14×3 METRIC BALL SCREW ENGINEERING Life Expectancy, Column Strength, Critical Speed: Metric Ball Screws Reference Number System MRT BALL SCREWS AND NUTS 16×5 to 25×5 40×10 to 40×40 50×10 to 63×12	116-11 120-12 122-12 124-13 126-12 126-12 130-13 130-13 134-13 136-13 140-14 142-14 145-14 145-14 150-18 150-18 150-18

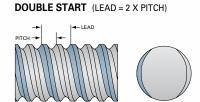


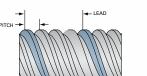
INTRODUCTION - Ball screws offer an efficient means of converting rotary motion to linear motion. A ball screw is an improvement over an acme screw just as an antifriction ball bearing is an improvement over a plain bushing.

Ball screw assemblies have a number of bearing balls that transfer the load between the nut and screw. The thread form in which the bearing balls ride is an ogival shape formed from two arcs of the same radius with offset centers. This form is also referred to as a gothic arch. (FIG. 1)

FIG. 1

BEARING BALL CIRCUIT - The closed path that the bearing balls follow through the ball nut. Ball nuts have one or more circuits.


RETURN GUIDE - Component that allows the bearing ball to be picked up and returned to the beginning or end of the circuit.


LOAD CARRYING BALLS - The bearing balls in contact with ball nut and ball screw sharing the load.

LAND DIAMETER - The outside diameter of the screw. This diameter is less than the ball circle diameter.

FIG. 2

FOUR START (LEAD = 4 X PITCH)

BALL CIRCLE DIAMETER - The diameter of the circle generated by the center of the bearing balls when in contact with the screw and nut.

ROOT DIAMETER - The diameter of the screw measured at the bottom of the thread. This is the diameter used for column strength, critical speed calculations and end machining considerations.

PITCH - The axial distance between threads. Pitch is equal to the lead in a single start screw.

LEAD - The axial distance the nut advances in one revolution of the screw. The lead is equal to the pitch times the number of starts.

PITCH x STARTS = LEAD

 ${\bf SCREW\ STARTS}$ - The number of independent threads on the screw shaft; typically one, two or four. (See FIG. 2)

Material

Screw Type

LEAD ACCURACY - Lead accuracy is the difference between the actual distance traveled versus the theoretical distance traveled based on lead. For example: A screw with a .5 inch lead and ±.001 in/ft lead accuracy rotated 24 times theoretically moves the nut 12 inches.

24 Revolutions \times .500 inches per revolution = 12.000 inches of travel with a Lead accuracy of .001 inch per foot, actual travel could be from 11.999 to 12.001 inches.

SRT Ball Screws will not deviate from nominal lead by more than $\pm .004$ inch/foot on screws through $2\frac{1}{2}$ " diameter and $\pm .008$ in/ft on screws 3" and over. Details on page 84.

XPR Ball Screws will not deviate from nominal lead by more than ±.001 inch/foot. Details on page 110.

SGT Ball Screws will not deviate from nominal lead by more than ±.0005 inch/foot. Details on page 124.

MATCHED LEAD - When multiple screws are used to move a load with precise synchronicity, screws of similar lead accuracy can be factory selected and supplied as sets. Consult factory for matched lead set tolerances.

Screw Dia.

SRT	Alloy	black	± .004 in/ft	0.375" to 2.500"	up to 24'
	Alloy	black	± .008 in/ft	3.000" to 6.000"	up to 24'
	Stainless	polished	± .004 in/ft	0.375" to 1.000"	up to 24'
XPR	Alloy	polished	± .001 in/ft	0.631" to 2.250"	up to 12'
SGT	Alloy	polished	± .0005 in/ft	0.631" to 2.250"	up to 10'

Lead Accuracy

Screw Lengths

Surface

STRAIGHTNESS - Although PowerTrac[™] Ball Screws are manufactured from straight, cylindrical material, internal stresses may cause the material to bend or yield. When ordering random lengths or cut material without end machining, straightening is recommended.

Handling or machining of screws can also cause the material to bend or yield. Before, during and after machining, additional straightening is required. When ordering screws with machined ends from Nook Industries, the following straightness tolerances can be expected:

PowerTrac™ SRT and XPR Ball Screws are straight within .010 inch/ foot when shipped from the factory, and do not exceed .030 inch in any 6 foot section.

PowerTrac™ SGT Ball Screws are straight within .001 inch/foot when shipped from the factory.

LIFE - A ball screw assembly uses rolling elements to carry a load similar to an anti-friction (ball) bearing. These elements do not wear during normal use, but rather fatigue. Therefore, ball screw life is predictable and is determined by calculating the fatigue failure of the components.

Proper Iubrication, regular maintenance, and operation within specified limits will allow PowerTrac™ Ball Screws to operate to the predicted life.

EFFICIENCY - The low coefficient of friction of the rolling elements of PowerTrac™ Ball Screws and Nuts results in an operating efficiency greater than 90%.

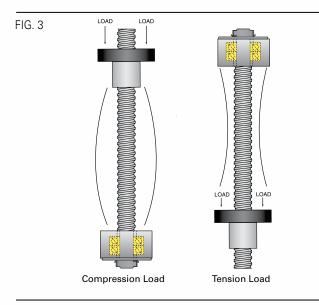
BACKDRIVING - Normally, ball screws are used to convert rotary motion into linear motion. Backdriving is the result of the load pushing axially on the screw or nut to create rotary motion.

All ball screws, due to their high efficiency, will backdrive. The resulting torque is known as "backdriving torque" and is the torque required to hold a load in position.

CAUTION - When using ball screws, applications should be analyzed to determine the necessity of a brake, especially when the possibility of injury may occur.

BACKLASH - Backlash (lash) is the relative axial movement between a screw and nut without rotation of the screw or nut. The axial movement between a new PowerTrac™ SBN or SGN ball nut and screw will range from .003″ to .015″ depending on size. Lash in ball screws will remain constant during normal use.

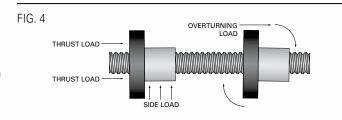
SELECTIVE FIT - When less than standard lash (listed above) is desired, SBN and SGN ball nuts can be custom-fit to a specific screw with selected bearing balls to minimize lash to .003" to .005" depending on ball size. Select fitting may result in lower life.


LOAD DEFINITIONS

STATIC LOAD -The maximum thrust load – including shock – that can be applied to the ball nut without damaging the assembly.

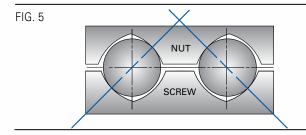
DYNAMIC LOAD - The thrust load in pounds which, when applied to the ball nut and rotating screw assembly will result in a minimum life of 1,000,000 inches of travel. Metric screw designs are per ISO 3408 and show the load ratings in kilonewtons for 1 million revolutions.

TENSION LOAD - A load that tends to "stretch" the screw. (See FIG. 3)


COMPRESSION LOAD - A load that tends to "squeeze" the screw. (See FIG. 3)

OVERTURNING LOAD - A load that tends to rotate the nut radially around the longitudinal axis of the screw. (See FIG. 4)

SIDE LOAD - A load that is applied radially to the nut. (See FIG. 4)


CAUTION - Although a side load will not prevent the ball screw from operating, the nut is not designed to operate with a side load, such as those generated from pulleys, drive belts, misalignment, etc.

THRUST LOAD - A load parallel to and concentric with the axis of the screw. (See FIG. 4)

PRELOAD - Preload is an internal force introduced between a ball nut and screw assembly that eliminates free axial and radial lash. Preloaded assemblies provide excellent repeatability and increased system stiffness.

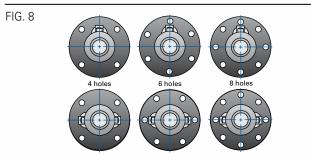
Preloading is achieved either by using two nuts and forcing them apart or by shifting the circuits within a single nut. Nook Industries has a variety of preloaded ball nut designs available. (See FIG. 5)

DESIGN CONSIDERATIONS

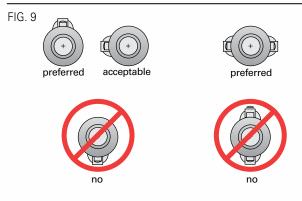
MOUNTING AND PINNING OF BALL NUT FLANGE - If a flange is used, it must be permanently fixed to the nut. Since mounting methods usually require the disassembly of the ball nut from the screw, it is best to order the nut and flange factory assembled.

The preferred method of locking a flange to a nut is a pin or set screw parallel to the screw which intersects the flange/nut mounting thread. Because of the dissimilarity of materials, the hole may need to be milled, not drilled. (See FIG. 6 & 7)

FIG. 6


FIG. 7	PIN OR SET SCREW	TAPPED WITH SET SCREW
Diameter	1	Description

Diameter	Description	Qty
.375 to .631	1/8 x 1/4 Slotted Spring Pin	1
.750 to .875	3/16 × 1/2 Slotted Spring Pin	1
1.000	3/16 × 1/2 Slotted Spring Pin	2
1.500200 to 1.500 -1.250	1/4-20 × 1/4 Set Screw	2
1.500473 to 1.500 -1.875	5/16-18 × 1/2 Set Screw	2
2.250 to 3.000	3%-16 × 3/4 Set Screw	2
4.000	½ × 13 × 1 Set Screw	2
	.375 to .631 .750 to .875 1.000 1.500200 to 1.500 -1.250 1.500473 to 1.500 -1.875 2.250 to 3.000	.375 to .631


Alternatively, the flange may be drilled and tapped radially for a set screw. After assembly of the flange to the nut, spot drill the nut threads through the flange and install a dog point set screw from the flange O.D. into the nut O.D. threads. Avoid getting metal chips in the nut when drilling.

Commercially available thread adhesives may be used for light load applications. Follow the manufacturer's recommendations to ensure a satisfactory bond. Avoid getting the adhesive onto the ball tracks.

STANDARD FLANGE ORIENTATION - Standard flange orientation varies with the number of holes in the flange. Unless otherwise specified, a factory-assembled flange will be oriented on the nut as shown. (See FIG. 8)

PROPER BALL NUT ORIENTATION - When a ball screw assembly is used in an orientation other than vertical, it is important to orient the return tubes to optimize ball nut operation. (See FIG. 9)

POWER•TRAC™
BALL SCREW ENGINEERING

TRANSFERRING BALL NUTS FROM SHIPPING ARBOR - When ordered individually, ball nuts are shipped on arbors. Transferring the ball nut from the arbor to the ball screw is achieved by placing the arbor against the end of the screw thread and carefully rotating the ball nut onto the screw from the arbor.

If the inside diameter of the arbor is too small to slip over the outside diameter of the journal, apply tape to the journal to bring the outside diameter up to the root diameter of the screw to prevent the bearing balls from falling out of the ball nut. The ball nut can then be transferred across the taped journal onto the ball screw. (See FIG. 10)

CAUTION - Removal of the arbor from the ball nut will result in the loss of the bearing balls. All of the bearing balls in a ball nut are matched. If any balls are lost during this transfer, they all must be replaced. Additional methods can be found online at www.nookindustries.com.

INSTALLING SEL, SAR, AND SAG BALL NUTS - These nuts must be transferred from the arbor to the screw without preload. Be sure to keep the ball return tubes aligned with each other and make sure the coupling tangs line up with the slots in the ball nut.

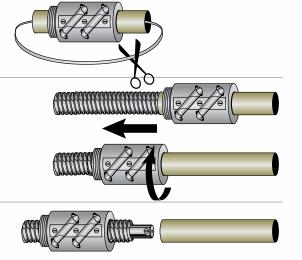
Center the adjusting nut on the coupling. Before preloading these ball nuts, all the coupling threads, spring washers/spacers and ball grooves should be lubricated.

Position the ball nut on the center of the screw shaft It is a good idea to place retainers (tape, tie-straps, etc.) on the screw to prevent the ball nut from over-traveling. With the ball return tubes facing upward, tighten the adjusting nut against the spring washer or spacer by hand until it cannot be turned. While holding the ball nut with tubes facing up, rotate the screw several turns in both directions.

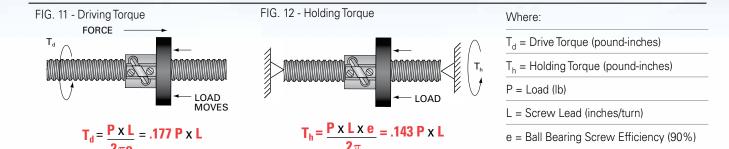
Running torque can be measured by means of a spring scale. The force reading multiplied by the lever arm length yields the running torque value. Make adjustments to achieve desired preload and check running torque value up and down the screw shaft Do not tighten the adjusting nut to a point that fully collapses the spring washers. After the system is adjusted, secure the adjusting nut with the set screws provided.

LUBRICATION - Proper and frequent lubrication must be provided to achieve predicted service life. A 90% reduction in the ball screw life should be anticipated when operating the nut and screw without lubricants. Standard lubrication practices for antifriction bearings should be followed when lubricating ball screws. A light oil or grease is suitable for most applications. Lubricants containing additives such as molydisulfide or graphite should not be used. Lubrication intervals are determined by the application. It is required that screw assemblies are lubricated often enough to maintain a film of lubricant on the screw.

E-900, Nook Ball Screw Lubricant, is oil that has been developed specifically for ball screws and is available as a spray or liquid. See page 74.


DRIVING TORQUE - Driving torque is the amount of torque required by the ball screw to move a load. To simplify this calculation a "torque to raise one pound or one kN" value is provided in the technical data for each ball screw size. (See FIG. 11)

To determine the required torque to move a load, multiply the load to be moved by the "torque to raise one pound or kN". For more information on drive torque, see the application example at the end of the section.


FIG. 10

- Remove ball nut retainer from arbor.
 Hold arbor firmly end to end with the screw.
 Make certain the arbor end is centered on the screw shaft end.
- 2. Slide the ball nut down the arbor and rotate counter to the thread until you feel the balls drop into the screw thread.
 - Then rotate with the screw thread until the ball nut completely clears the end of the screw shaft adjacent to the arbor.
- 3. Remove the arbor.

To transfer the ball nut from screw to arbor, reverse the above procedure.

CAUTION - Extreme care must be take to prevent the ball nut from sliding off the end of the screw shaft during installation and handling. Temporary stops can be made by wrapping tape around the shaft balls grooves at each end. Be sure to remove tape and any residual adhesive after the ball screw assembly is properly installed.

HOLDINGTORQUE - Due to the efficiency of a ball screw, a load applied to the ball nut will generate backdriving torque on the ball screw. The torque required to hold the load in position can be calculated by the following formula.(See FIG. 12)

TEMPERATURE - PowerTrac[™] ball nuts will operate between -65°F and 300°F with proper lubrication. PowerTrac[™] ball nuts equipped with elastomeric wipers are limited to operation between -20°F and 180°F.

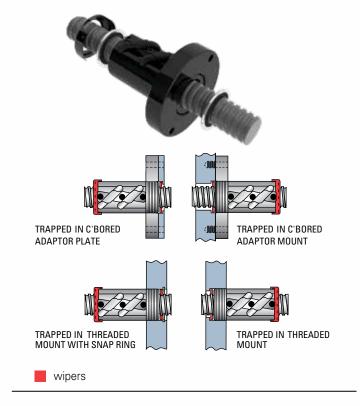
END MACHINING - To obtain optimum performance of your ball screw assembly, it is recommended that the machining be performed at the Nook Industries factory. Screws may be purchased machined to your specifications or to standard end machining designs shown on pages 192-194.

Annealed ends can be provided on SRT screws to facilitate end machining of journals.

EZZE-MOUNT™ - Ball screws in operation generate an axial load and a radial load; therefore, end mounts must be designed to accommodate these loads. Nook Industries has designed precision end mounts to work specifically with ball screws. For a detailed description of these bearing supports see pages 195-199.

An EZZE-MOUNT™ can be shipped pre-assembled to a PowerTrac™ Ball Screw. For complete PowerTrac™ Ball Screw Assemblies refer to pages 74-79.

OPTIONAL SURFACE COATINGS - PowerTrac[™] ball screws are available with optional corrosion resistant surface coatings. Consult Nook Industries for detailed specifications.


WIPER KITS - It is recommended that wipers be used with ball nuts to prevent contamination from foreign materials. The product pages detail the different types of wipers available for or that come standard with each ball nut. Brush wipers may require customer-supplied retention. For the different ways that this can be achieved (See FIG. 13).

BOOTS AND BELLOWS - For contaminated environments, use of a boot or metal cover to protect the ball screw assembly is recommended.

POWERTRAC™ MATERIAL SPECIFICATIONS - PowerTrac™ ball screws are manufactured from high quality alloy steel, induction hardened to Rc 58-62. PowerTrac™ ball nuts are manufactured from steel with ball tracks heat treated to Rc 58-62.

SRT ball screws less than 16 ft are given a protective black oxide finish. XPR and SGT ball screws are provided with a polished finish. Selected sizes are available in heat-treated stainless steel (Rc 40-45) for applications in corrosive environments. (See FIG. 14 on following page)

FIG. 13 - Some Examples of How to Attach Wiper to V-Thread End

FIG. 14		ALLOY		STAINLESS STEEL
_	SRT	XPR	SGT	
Material	4150 Series	4150 Series	4150 Series	17-4 PH
Hardness	Rc 58-62 Case Hardened	Rc 58-62 Case Hardened	Rc 58-62 Case Hardened	Conditioned H900 Thru Hardened
Tensile	120,000 psi	120,000 psi	120,000 psi	150,000 psi
Finish	Roller Burnished, Black Oxide Finish (16 ft or less)	Precision Roller Burnished	Precision Ground	Roller Burnished

BALL SCREW SELECTION

The selection of the correct ball screw and nut for a particular application involves five interrelated factors. Before attempting to determine the ball screw and nut combination, the following values must be known:

- Load measured in pounds or newtons
- Speed measured in inches or millimeters per minute
- Length between bearings measured in inches or millimeters
- Life expectancy
- End fixity type

LOAD - The loads that need to be considered are the static loads. dynamic loads, reaction forces and any external forces affecting the screw. See Load definitions section on page 60 for details.

SPEED - The travel rate (linear speed) is the rpm at which the screw or nut is rotating multiplied by the lead of the screw.

LENGTH - Unsupported length of the screw.

LIFE EXPECTANCY - The dynamic load ratings shown on the product specification pages indicate the load that can be carried for 1,000,000 inches of travel for inch screws and 1,000,000 revolutions for metric screws.

The charts on pages 70-71 relate life to load. In applications where the load is relatively constant over the entire stroke, use the highest load to select the ball screw to provide a factor of extra life. For applications where the loads vary significantly, an equivalent load can be calculated using the following formula:

> $\binom{1}{3} \binom{1}{3} + \binom{1}{3} \binom{1}{3} + \binom{1}{3} \binom{1}{3} + \binom{1}{3} \binom{1}{3} + \binom{1}{3} \binom{1}{3}$ WHERE L = equivalent load L_a = each increment of load $% = percent of stroke at load L_s$ FOR EXAMPLE: $L_1 = 150# \%_1 = 30\%$ $L_2 = 225\# \%_1 = 45\%$ $L_3 = 725\# \%_1 = 25\%$ $L_m = 466 \text{ lbs}.$

The life required is determined by multiplying the total stroke in inches by the total number of strokes required for the designed life of the equipment. To calculate the travel life for a ball nut other than at rated load use the formula. (See FIG. 15)

FIG. 15

 T_x = Travel other than rated load. Life is given in inches or meters.

 F_r = Rated Load in pounds or kilonewtons.

F_v = Actual or Equivalent load in pounds or kilonewtons

 T_r = Rated Travel Life. For inch screws this is equal to 1.000.000 inches. For Metric Screws this is equal to the ball nut lead in meters times one million

Simple Shaft

END FIXITY - End fixity refers to the method by which the ends of the screw are supported. The degree of end fixity is related to the amount of restraint of the ends of the screw

Three basic types of end fixity are: "Simple" end fixity can be provided through a single bearing support.

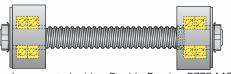
Free No support.

supported at a single point

Fixed Shaft rigidly restrained against axial rotation.

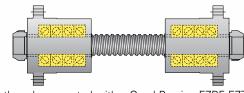
Multiple or spaced pairs of bearings are more rigid than a "simple" support, but, because of their inherent compliance are not truly "fixed". A screw can be supported with different combinations of end fixity. (See FIG.16: A-D)

FIG.16:


A: One end supported with a Double Bearing EZZE-MOUNTTM, other end Free. Use Line A" in reference to the charts shown on pages 72-73 and 146-147.

NOTE: Not recommended for any application other than short travels and slow speeds.

FIG.16 (cont'd):



B: One end supported with a Double Bearing EZZE-MOUNT[™], other supported with a Single Bearing EZZE-MOUNT™. Use Line B in reference to the charts shown on pages 72-73 and 146-147.

C: Both ends supported with a Double Bearing EZZE-MOUNT[™]. Use Line C in reference to the charts shown on pages 72-73 and 146-

CAUTION: When using fixed bearing mounts on both ends, contact Nook Engineering to determine the mount-to-mount length tolerance of the final assembly.

D: Both ends supported with a Quad Bearing EZRF EZZE MOUNT™. Use Line D in reference to the charts shown on pages 72-73 and 146-147.

NOTE: When supporting a screw with two EZRF mounts, the screw is highly rigid. Extra care should be taken to ensure compliance in your assembly.

CAUTION: When using fixed bearing mounts on both ends, contact Nook Engineering to determine the mount-to-mount length tolerance of the final assembly.

CRITICAL SPEED - The speed that excites the natural frequency of the screw is referred to as the critical speed. Resonance at the natural frequency of the screw will occur regardless of the screw orientation (vertical, horizontal etc.) or if the system is designed so the nut rotates about the screw.

The critical speed will vary with the diameter, unsupported length, end fixity and rpm. Since critical speed can also be affected by shaft straightness and assembly alignment, it is recommended the maximum speed be limited to 80% of the calculated critical speed. The theoretical formula to calculate critical speed in rpm is:

$$N = \frac{C_s \times 4.76 \times 10^6 \times d}{L^2}$$

WHERE: N = Critical Speed

d = Root Diameter of Screw (inch)

L = Length Between Bearing Supports (inch)

 $C_0 = 0.36$ for one end fixed, one end free

1.00 for both ends simple

1.47 for one end fixed, one end simple

2.23 for both ends fixed

The critical speed chart on page 73 or 147 is provided to quickly determine the minimum screw size applicable for Nook EZZE-MOUNT™ designs. Maximum travel rate is also limited by ball velocity. The ball velocity is a function of the ball circle diameter and rotational speed. Ball velocity is limited by a maximum DN (ball circle diameter x rpm). The charts show the maximum speed based on the DN value for each screw in parentheses.

If the selected ball screw does not meet the speed criteria, consider the following options:

a) Increase screw lead (reduce rpm)

b) Change end fixity (e.g. simple to fixed)

c) Increase ball circle diameter

The final consideration should be to recheck the selected screw against all three of the design criteria: life, column strength and critical speed.

COLUMN STRENGTH - When a screw is loaded in compression (see compression load definition on page 62), its limit of elastic stability can be exceeded and the screw will fail through bending or buckling.

The theoretical formula to calculate the column strength in pounds is:

$$P_{cr} = \frac{14.03 \times 10^6 \times F_c \times d^4}{I^2}$$

WHERE: $P_{cr} = Maximum Load$

 F_C = End Fixity Factor

.25 for one end fixed, one end free

1.00 for both ends supported

2.00 for one end fixed, one end simple

4.00 for both ends rigid

d = Root Diameter of Screw (inch)

L = Distance between nut and load carrying bearing (inch)

The column strength chart on page 72, may be used to verify that the screw can carry the required load without buckling.

The charts show the theoretical limitations of each screw on a separate line. The lines are limited horizontally by the slenderness ratio and vertically by the maximum static capacity of the nut. Actual load is limited by the maximum nut capacity or end mounting.

If the selected screw does not meet compression load criteria, consider the following options:

- a) Change end fixity (e.g. simple to fixed)
- b) Design to use screw in tension
- c) Increase screw diameter

APPLICATION EXAMPLE

APPLICATION

Given the following requirements, select a ball screw for this application.

Specifications:

- 5,000 lb load supported and guided on linear bearings moving horizontally
- 36" travel
- Complete 36" travel in 10 sec.
- Bearing Support Undecided
- Positioning accuracy ±½"

STEP 1

Find the axial force required to move load. The axial force is determined by multiplying the coefficient of friction of the guidance system by the load.

 $F = u \times N$

 μ = coefficient of friction of the guidance system

Using Nook linear bearings in this application:

μ = Coefficient of Friction for lubricated Nook Linear Bearings

= .0013

N = Load = 5,000 lb

 $F = u \times N$

 $F = .0013 \times 5,000 \text{ lb}$

 $F = 6.5 \, lb$

Therefore:

The Axial Force the screw must produce to move the load is 6.5 lb.

STEP 2

Find Average Travel Rate. The average travel rate is determined by dividing travel distance by travel time.

V average = D/t

D = distance = 36"

t = total time = 10 sec.

V avg. = D/t

V avg. = 36 in/10 sec.

V avg. = 3.6 in/sec. or 216 in/min

Therefore the average travel rate is 216 in/min.

STEP 3

Find Maximum Travel Rate. When considering critical speed, peak velocity should be used. Using a basic triangular motion profile (acceleration = deceleration with no constant velocity travel), the peak velocity equals twice the average velocity.

 $V \text{ peak } = 2 \times V \text{ avg.}$

V avg. = 3.6 in / sec. or 216 in/min

 $V \text{ peak } = 2 \times V \text{ avg.}$

V peak = 432 in/min

The Maximum Travel Rate is 432 in/min during the traverse of 36" in 10 sec.

STEP 4

Determine total unsupported length. Total Travel is given as 36", but extra screw length should be considered for travel nut, carriage, and any extra screw length for over travel.

Based on the travel nut and attachment of the nut to the carriage in this application it is determined that an extra 4" of screw length will be required.

(Refer to the dimensional information of the particular nut used)

L total = 36" + 4" = 40"

The total unsupported length to be used for critical speed and column loading calculations is 40".

STEP 5

Determining end fixity. The layout of the application shows that adequate space is available to use a double bearing EZZE-MOUNT™ at each end. (See end fixity definitions on page 66-67)

End Fixity = Type C

STEP 6

Select a screw based on the critical speed. Use previously determined values with the Critical Speed chart on page 73.

Max Travel Rate = 432 in/min

End Fixity = Type C

Length between bearings = 40"

Based on the Critical Speed chart, the best choice, appears to be a 1000-0250 SRT. Since the lead of the 1000-0250 SRT ball screw is .250", the maximum rpm needed to achieve the maximum travel rate would be 1,728 rpm.

STEP 7

Check Column Strength of screw. Use previously determined values with the Column Strength Chart.

Load = 6.5 lb

End Fixity = Type C

Length Between Bearing Supports = 40"

Based on the Column Strength Chart the load is within the column strength of this screw.

NOTE: Note: If this were a vertical application the full 5,000 lb load would be used. Also, under high acceleration conditions the inertia load must be determined and added to the total load for column considerations.

STEP 8

Create a reference number for the assembly. See page 81 for Reference Number System Chart.

The 1000-0250 SRT thread form is desired in a right hand thread. The end code used for machining this screw is end code 20. The type of end machining will be a Type 3 on both ends of the screw to allow for the mounting of double bearing EZZE-MOUNT™. One of the ends will have an extension to attach a coupling, the other will not. To determine the overall length of the assembly, add up the length of the ends plus the unsupported length:

One end Type 3K (drive end with keyway) = 4.03"

One end Type 3N (no drive end) = 2.71"

40" between supports

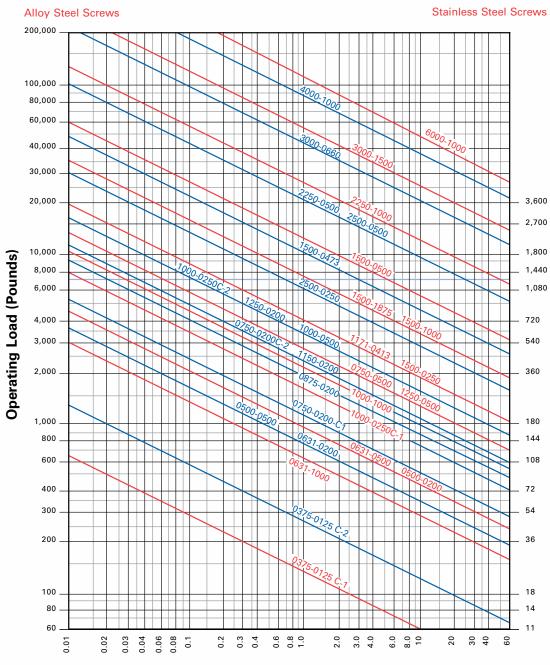
Overall length: 40'' + 4.03'' + 2.71'' = 46.74''

The Parts List Includes:

- 1000-0250 SRT Ball Screw
- Ball Nut Number: SBN10466
- Flange Number: FLG7571
- EZZE-MOUNT™: EZM-2020 2 required

To receive an assembly of these components with the EZZE-MOUNTTM, nut, and flange installed on the screw, the order reference number is:

1000-0250 SRT RH/EK/EN/46.74/SBN10466/FS



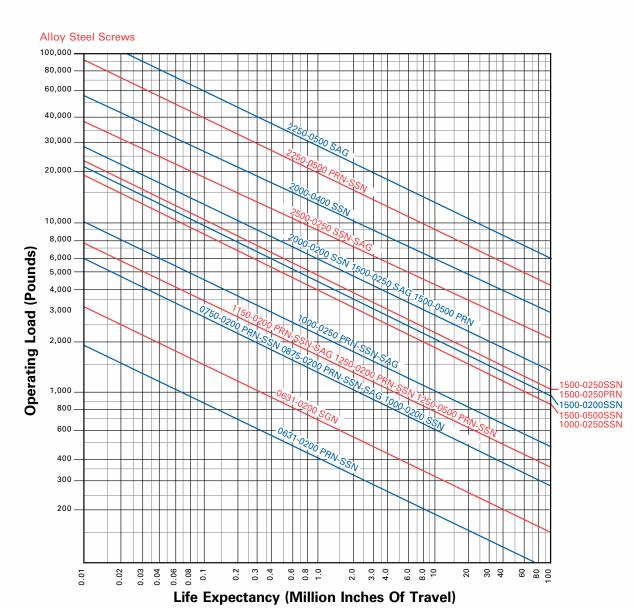
LIFE EXPECTANCY: SRT ROLLED INCH SCREWS

TO USE THIS CHART

- 1) Determine required Life (in million inches of travel) at equivalent operating load.
- 2) Find point at which load and life requirements intersect.
- 3) Select ball nut to the right or above the intersect point.

NOTE: IF USING A BALL SCREW WITHOUT LUBRICANT DE-RATE LIFE BY 90%.

Life Expectancy (Million Inches Of Travel)

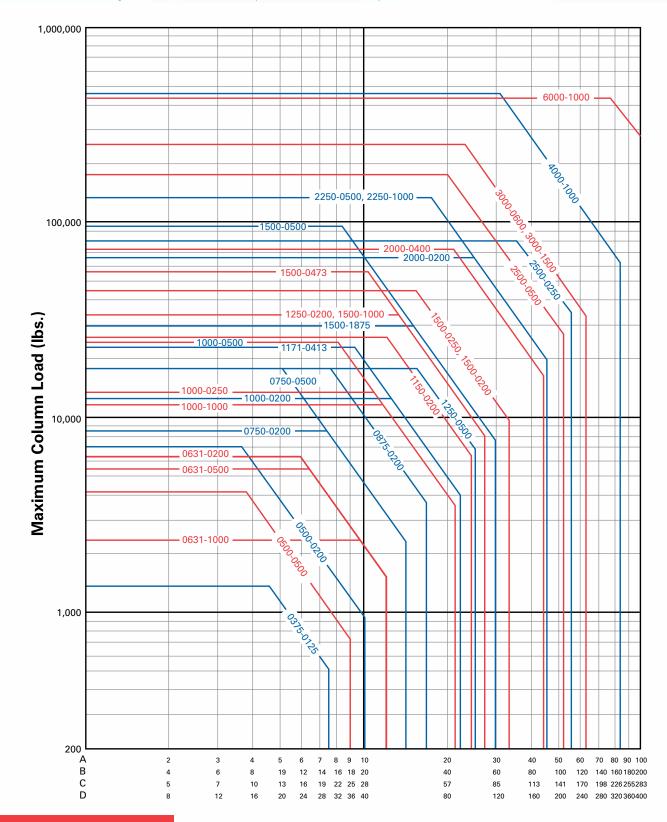

POWER•TRAC™ BALL SCREW ENGINEERING

AND SGT PRECISION GROUND INCH SCREWS LIFE EXPECTANCY: XPR PRECISION ROLLED

TO USE THIS CHART

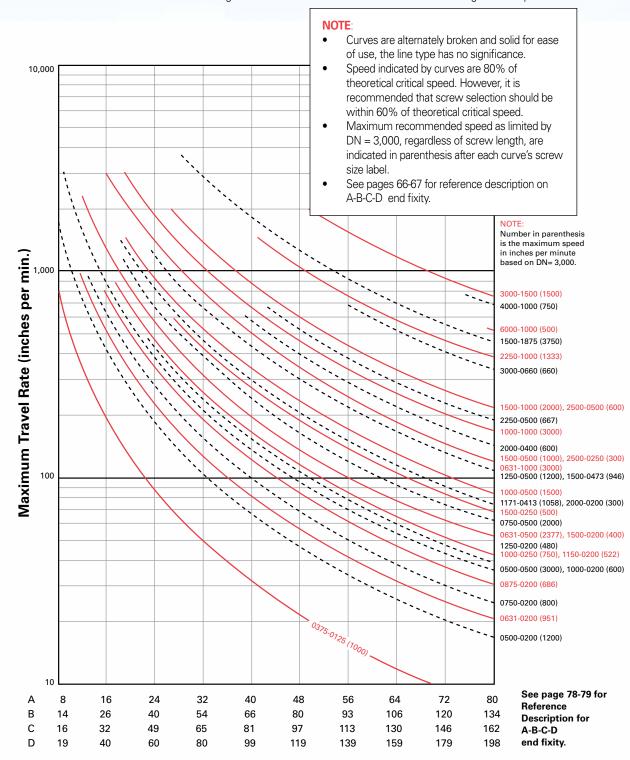
- 1) Determine required Life (in million inches of travel) at equivalent operating load.
- 2) Find point at which load and life requirements intersect.
- 3) Select ball nut to the right or above the intersect point.

NOTE: IF USING A BALL SCREW WITHOUT LUBRICANT DE-RATE LIFE BY 90%.



COLUMN STRENGTH: SRT, XPR AND SGT INCH SCREWS

TO USE THIS CHART: Find a point at which the maximum length between bearing support and ball nut intersects the maximum load. Be sure the screw selected is above and to the right of that point.


See Page 66-67 for reference description on A-B-C-D end fixity.

CRITICAL SPEED: BALL INCH SCREWS

TO USE THIS CHART: Determine maximum travel rate required. Determine screw length L. Find point at which travel rate and screw length intersect and select a screw above and to the right of that point.

Maximum Length Between Bearings (in)

STANDARD NOOK COMPONENTS AND SERVICES

NOOK BALL SCREW AND NUT ASSEMBLIES provide ease of application, as all that is required is installation. Nook assemblies offer turn key solutions that only require a power source (hand operation or motor). All of the elements are available for quick delivery from shelf stock. Component and assembly drawings are available from CAD drawings that can be configured and downloaded online. Contact Nook sales engineers for assistance.

Ball Screw

Ball Nut

Flange

End Machining

10.

EZZE-MOUNT[™] Bearing Mounts

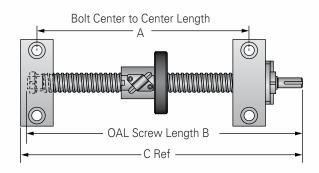
EZZE-MOUNT™ Motor Mounts

BALL SCREW AND NUT LUBRICATION

Protects Against Inter-ball Friction, Wear and Corrosion

E-900 Ball Screw Lubricant may be used on both rolled and ground thread ball screws. E-900 will provide a lasting film for wear protection and resistance to corrosion. With an operating range of -65° to +375°F, E-900 has low starting torque characteristics and helps reduce inter-ball friction in ball screw assemblies. For optimum results the ball screw should be in good repair and free of dirt and grease. Used regularly, E-900 will extend the life of ball screw assemblies. It should be applied generously on the entire length of the screw. In addition, E-900 will prolong the useful life of ball bearing splines, bearings, anti-friction bearings, and other rolling element products.

E-900 SPRAY CAN									
PART NAME	E-900								
NET CONTENTS PER UNIT	12 oz.								
PART # NLU-1003	1 CAN weight of 1 lb								
PART # NLU-2003	1 CASE with 12 cans - total weight of 13 lb								


E-900 LIQUID

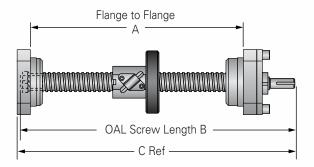
PART NAME	E-900L
PART # NLU-1004	1 BOTTLE weight of 32 oz.
PART # NLU-2004	1 CASE with 12 quarts - total weight of 25 lb 5 oz.

BALL SCREW AND NUT ASSEMBLIES UNIVERSAL MOUNTS

NOTE: Dimensions reflect a ½" over travel at each end. Add Travel to measurements below for total length.

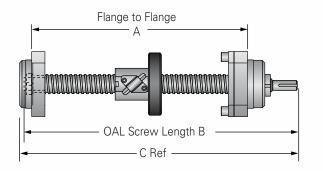
Part Number	Lead (in)	A (in)	B (in)	C (in)	Page
0375-0125	0.125	3.02	4.78	5.00	86
0500-0200	0.200	4.58	7.01	7.13	86
0500-0500	0.500	3.90	5.75	5.94	86
0631-0200	0.200	4.11	7.14	7.38	88
0631-0500	0.500	4.11	7.14	7.38	88
0631-1000	1.000	4.11	7.14	7.38	88
0750-0200	0.200	4.28	7.55	7.76	86
0750-0500	0.500	5.33	8.60	8.81	86
0875-0200	0.200	5.40	8.65	9.04	86
1000-0250	0.250	5.09	8.99	9.10	92
1000-0500	0500	5.87	9.77	9.88	92

Part Number	Lead (in)	A (in)	B (in)	C (in)	Page
1000-1000	1.000	5.74	9.64	9.75	94
1150-0200	0.200	5.46	9.59	9.89	94
1171-0413	0.413	6.12	10.02	10.125	96
1250-0200	0.200	6.25	10.38	10.678	96
1250-0500	0.500	6.54	10.67	10.97	96
1500-0250	0.250	5.84	10.42	10.675	98
1500-0473	0.413	7.27	11.40	11.702	98
1500-0500	0.500	8.55	12.68	12.98	100
1500-1000	1.000	6.59	10.72	11.018	100
1500-1875	1.875	7.96	12.54	12.8	100


NOTE: Larger screw sizes with EZZE-MOUNT™ bearing mounts are available. Consult factory engineers for details.

nookindustries.com

BALL SCREW AND NUT ASSEMBLIES

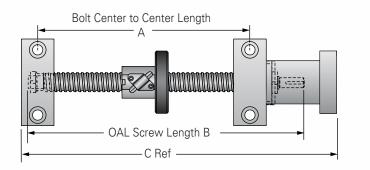

NOTE: Dimensions reflect a 1/2" over travel at each end. Add Travel to measurements below for total length.

Part Number	Lead (in)	A (in)	B (in)	C (in)	Page
0375-0125	0.125	2.92	4.72	4.94	86
0500-0200	0.200	4.607	6.757	6.937	86
0500-0500	0.500	3.795	5.685	5.875	86
0631-0200	0.200	4.03	6.94	7.15	88
0631-0500	0.500	4.03	6.94	7.15	88
0631-1000	1.000	4.03	6.94	7.15	88
0750-0200	0.200	4.405	7.415	7.625	86
0750-0500	0.500	5.457	8.467	8.677	86
0875-0200	0.200	5.294	8.474	8.674	86
1000-0250	0.250	5.12	8.64	8.85	92
1000-0500	0.500	5.9	9.42	9.63	92

Part number	Lead (in)	A (in)	B (in)	C (in)	Page
1000-1000	1.000	5.77	9.29	9.5	94
1150-0200	0.200	5.47	9.32	9.62	94
1171-0413	0.413	6.145	9.665	9.875	96
1250-0200	0.200	6.258	10.108	10.408	96
1250-0500	0.500	6.55	10.4	10.7	96
1500-0250	0.250	5.835	10.145	10.405	98
1500-0473	0.413	7.282	11.132	11.432	98
1500-0500	0.500	8.56	12.41	12.71	100
1500-1000	1.000	6.598	10.448	10.748	100
1500-1875	1.875	7.96	12.27	12.27 12.53	

FLANGE MOUNTS, PILOT FACING OUT

NOTE: Dimensions reflect a 1/2" over travel at each end. Add Travel to measurements below for total length.

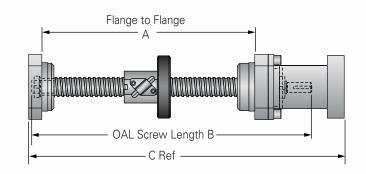

Part Number	Lead (in)	A (in)	B (in)	C (in)	Page
0375-0125	0.125	3.18	4.72	4.94	86
0500-0200	0.200	4.64	6.76	6.94	86
0500-0500	0.500	4.06	5.69	5.88	86
0631-0200	0.200	4.15	6.94	7.15	88
0631-0500	0.500	4.15	6.94	7.15	88
0631-1000	1.000	4.15	6.94	7.15	88
0750-0200	0.200	4.35	7.42	7.63	86
0750-0500	0.500	5.40	8.47	8.68	86
0875-0200	0.200	5.40	8.47	8.67	86
1000-0250	0.250	5.07	8.64	8.85	92
1000-0500	0.500	5.85	9.42	9.63	92

 Part number	Lead (in)	A (in)	B (in)	C (in)	Page
1000-1000	1.000	5.72	9.29	9.50	94
1150-0200	0.200	5.60	9.32	9.62	94
1171-0413	0.413	6.10	9.67	9.88	96
1250-0200	0.200	6.39	10.11	10.41	96
1250-0500	0.500	6.68	10.40	10.70	96
1500-0250	0.250	5.99	10.15	10.41	98
1500-0473	0.413	7.41	11.13	11.43	98
1500-0500	0.500	8.69	12.41	12.71	100
1500-1000	1.000	6.72	10.45	10.75	100
1500-1875	1.875	8.11	12.27	12.53	100

ASSEMBLIES WITH MOTOR MOUNTS

UNIVERSAL MOUNTS

NOTE: Dimensions reflect a ½" over travel at each end. Add Travel to measurements below for total length.


Part Number	Lead (in)	A (in)	B (in)	C (in)	Motor Mount	Page
0500-0200	0.200	4.577	7.007	8.727	EZM-3010-23	86
0500-0500	0.500	3.895	5.745	7.285	EZM-1008-17	86
0631-0200	0.200	4.11	7.14	9.01	EZM-3012-23	88
0631-0500	0.500	4.11	7.14	9.01	EZM-3012-23	88
0631-1000	1.000	4.11	7.14	9.01	EZM-3012-23	88
0750-0200	0.200	4.275	7.545	9.385	EZM-3015-34	90
0750-0500	0.500	5.327	8.597	10.437	EZM-3015-34	90
0875-0200	0.200	5.404	8.654	10.954	EZM-3017-34	90
1000-0250	0.250	5.09	8.99	11.03	EZM-2020-34	92
1000-0500	0.500	5.87	9.77	11.81	EZM-2020-34	92

Part Number	Lead (in)	A (in)	B (in)	C (in)	Motor Mount	Page
1000-1000	1.000	5.74	9.64	11.68	EZM-2020-34	94
1150-0200	0.200	5.46	9.59	11.88	EZM-3025-34	94
1171-0413	0.413	6.115	10.015	12.055	EZM-2020-34	96
1250-0200	0.200	6.248	10.378	12.668	EZM-3025-34	96
1250-0500	0.500	6.54	10.67	12.96	EZM-3025-34	96
1500-0250	0.250	5.835	10.415	12.785	EZM-2030-34	98
1500-0473	0.473	7.272	11.402	13.692	EZM-3025-34	98
1500-0500	0.500	8.55	12.68	14.97	EZM-3025-34	100
1500-1000	1.000	6.588	10.718	13.008	EZM-3025-34	100
1500-1875	1.875	7.96	12.54	14.91	EZM-2030-34	100

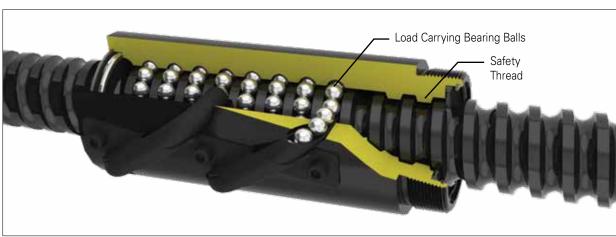
NOTE: Larger screw sizes with EZZE-MOUNT[™] bearing mounts are available. Consult factory engineers for details.

FLANGE MOUNTS, PILOT FACING IN

NOTE: Dimensions reflect a ½" over travel at each end. Add Travel to measurements below for total length.

Part Number	Lead (in)	A (in)	B (in)	C (in)	Motor Mount	Page
0500-0200	0.200	4.61	6.76	8.58	EZF-3010-23	86
0500-0500	0.500	3.80	5.69	7.23	EZF-1008-17	86
0631-0200	0.200	4.03	6.94	7.33	EZF-3012-23	88
0631-0500	0.500	4.03	6.94	7.33	EZF-3012-23	88
0631-1000	1.000	4.03	6.94	7.33	EZF-3012-23	88
0750-0200	0.200	4.41	7.42	9.63	EZF-3015-34	90
0750-0500	0.500	5.46	8.47	10.69	EZF-3015-34	90
0875-0200	0.200	5.29	8.47	10.60	EZF-3017-34	90
1000-0250	0.250	5.12	8.64	10.79	EZF-2020-34	92
1000-0500	0.500	5.90	9.42	11.57	EZF-2020-34	92

Part Number	Lead (in)	A (in)	B (in)	C (in)	Motor Mount	Page
1000-1000	1.000	5.77	9.29	11.44	EZF-2020-34	94
1150-0200	0.200	5.47	9.32	11.62	EZF-3025-34	94
1171-0413	0.413	6.145	9.67	11.82	EZF-2020-34	96
1250-0200	0.200	6.26	10.11	12.41	EZF-3025-34	96
1250-0500	0.500	6.55	10.40	12.70	EZF-3025-34	96
1500-0250	0.250	5.84	10.15	12.54	EZF-2030-34	98
1500-0473	0.473	7.28	11.13	13.43	EZF-3025-34	98
1500-0500	0.500	8.56	12.41	14.71	EZF-3025-34	100
1500-1000	1.000	6.60	10.45	12.75	EZF-3025-34	100
1500-1875	1.875	7.96	12.27	14.66	EZF-2030-34	100


- nookindustries.com

The primary failure mode for ball nuts is fatigue of the bearing balls or thread surface. However, ball nuts can fail prematurely due to misalignment, impact loading, a lack of lubrication, contamination, or external damage to the return circuits. Premature failure may result in the loss of some or all of the balls between the nut and screw. When all the balls are lost the nut is no longer engaged with the screw and therefore may not move when the screw is rotated or, in vertical applications, will free fall along the screw.

In applications where this loss of ball type failure could result in injury or death, this failure needs to be considered in the design. Possible preventative measures include the use of two or more screws supporting the load, use of nuts with multiple independent ball recirculation circuits, use of Ball Deflectors which prevent the balls from exiting the ball nut out the ends, or use of the Nook Integral Safety Thread ball nut.

The Nook Integral Safety Thread is a unique solution that provides the ball nut with a secondary safety thread - a reverse thread in the nut body itself. This special thread extends from the ID of the nut to below the OD of the screw without making contact. In the unlikely event that all the balls in the nut are lost, this "safety" thread will engage the screw and prevent free-fall. Although this thread can be used to lower the load to a safe position, it is not to be used otherwise. This can also be accomplished with the use of a special flange if the ball nut body cannot accommodate the Safety Thread feature.

Screw	Helix	Safety Thread	Ball Deflector
0631-0200	RH	SBN10583	-
1500-0500	RH	SBN10974	_
2250-0500	RH	SBN10629	SBN10074
2250-0500	LH	-	SBN10075
2250-1000	RH	-	SBN10260
3000-0660	RH	SBN10202	SBN10202
3000-0660	LH	_	SBN10257
3000-1500	RH	-	SBN4986
4000-1000	RH	SBN3258	SBN3258

Ball nut with integral safety thread

BALL SCREW AND NUT ASSEMBLIES

REFERENCE NUMBER SYSTEM

MODIFIER LIST

F, B, and/or W Optional

F = Round Flange

Nut will be installed with flange

Length in inches, 2 place decimal

Refer to the First End Configuration

Note: Both Ends must be specified.

OVER - ALL - LENGTH (OAL)

or threaded end toward

first end designation.

SECOND END

section below

CONFIGURATION

000000 = No Nut

B = Boot

BALL NUT

W = Wiper

S = Standard, no additional

M = Modified, additional

description required

description required

S or M Required

BALL SCREW

Thread Form Codes

Dia. - Lead Part# **0375-0125** = 0.375-0.125 0500-0200 = 0.500-0.2000500-0500 = 0.500-0.500

0631-0200 = 0.631-0.200 **0631-0500** = 0.631-0.500 **0631-1000** = 0.631-1.000 0750-0200 = 0.750-0.200**0750-0500** = 0.750-0.500

0875-0200 = 0.875-0.200**1000-0200** = 1 000-0 200 **1000-0250** = 1.000-0.250 **1000-0500** = 1.000-0.500 **1000-1000** = 1.000-1.000

1150-0200 = 1.150-0.200 **1171-0413** = 1 171-0 413 **1250-0200** = 1.250-0.200 **1250-0500** = 1.250-0.500 **1500-0200** = 1.500-0.200 **1500-0250** = 1.500-0.250

1500-0473 = 1.500-0.473 **1500-0500** = 1.500-0.500 **1500-1000** = 1.500-1.000 **1500-1875** = 1.500-1.875 **2000-0200** = 2.000-0.200

2000-0400 = 2.000-0.400 **2250-0500** = 2.250-0.500 **2250-1000** = 2.250-1.000 **2500-0250** = 2.500-0.250

2500-0500 = 2.500-0.500 **3000-0660** = 3.000-0.660 **3000-1500** = 3.000-1.500 **4000-1000** = 4.000-1.000 **6000-1000** = 6.000-1.000

PRECISION

SRT = Standard Rolled Thread ±0.004"/ft.

XPR = Precision Rolled Thread ±0.001"/ft.

SGT = Precision Ground Thread ±0.0005"/ft. Note: Not all precisions

are available for all sizes.

MATERIAL

RA

 \triangle **A** = Alloy R = Right Hand Thread L = Left Hand Thread S = Stainless

Note: Not all materials are available for all sizes.

FIRST END CONFIGURATION

Note: Both Ends must be specified.

Single Bearing Supports are used in conjunction with Type 1N end machining

Double Bearing Supports are used in conjunction with Type 3K, 3L, or 3N end machining.

Flanged Fixed Bearing Mounts are used in conjunction with Type 5 end machining

EZZE-MOUNT™ / End Machining (see page 207 & 204-206)

1 = Type 1 4 = Type 45 = Type 5

2 = Type 2 3 = Type 3

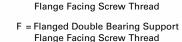
EK = Universal Double Bearing

B = Universal Double Bearing Support End Cap Facing Screw Thread

- C = Universal Single Bearing Support
- Cap Facing Away From Screw Thread
- with Motor Mount

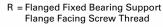
Support, with Keyway

EK

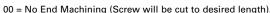

- E = Universal Double Bearing Support End
- U = Universal Double Bearing Support with Motor Mount
- Y = Flanged Double Bearing Support

D = Flanged Single Bearing Support

Shaft Extension


N = No Shaft Extension

K = Shaft Extension with Keyway


L = Shaft Extension without Keyway

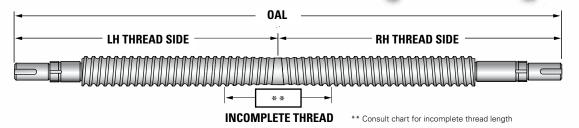
(see page 204-206)

V = Flanged Fixed Bearing Support Flange Facing Away From Screw Thread

XX = Custom Machining (Print or specified data must be provided).

nookindustries.com

TWIN-LEAD BALL SCREW ASSEMBLIES


Twin-lead ball screws offer dual opposing motion using a single drive system. These one-piece, high performance ball screws are made from high alloy steel that is black oxided for protection.

Twin-lead ball screw assemblies can be assembled with Nook PowerTrac™ ball nuts, flanges and EZZE-MOUNT™ bearing supports (see page 171-201) to form cost effective systems. Twin-lead ball screws can be used in molding machines, packaging equipment, food processing machinery, robotics, material handling equipment, tire manufacturing and assembly applications.

- Lead accuracy of ±0.004"/foot is standard
- For a shorter unthreaded center section, contact Nook Industries customer service at 800-321-7800.

Twin-Lead screws are stocked for quick delivery without machined ends in the sizes in the chart below. To order a twin-lead cut to a custom length and/or with machined ends, select a size from the Twin-Lead chart to the right, determine OAL, LH and RH thread length, nut, flange and, if required, EZZE-MOUNT™ bearing support. Precision ground twin lead ball screws are also available. Contact a Nook sales engineer for availability. Consult the Twin-Lead Reference Number System on the next page to complete your part number.

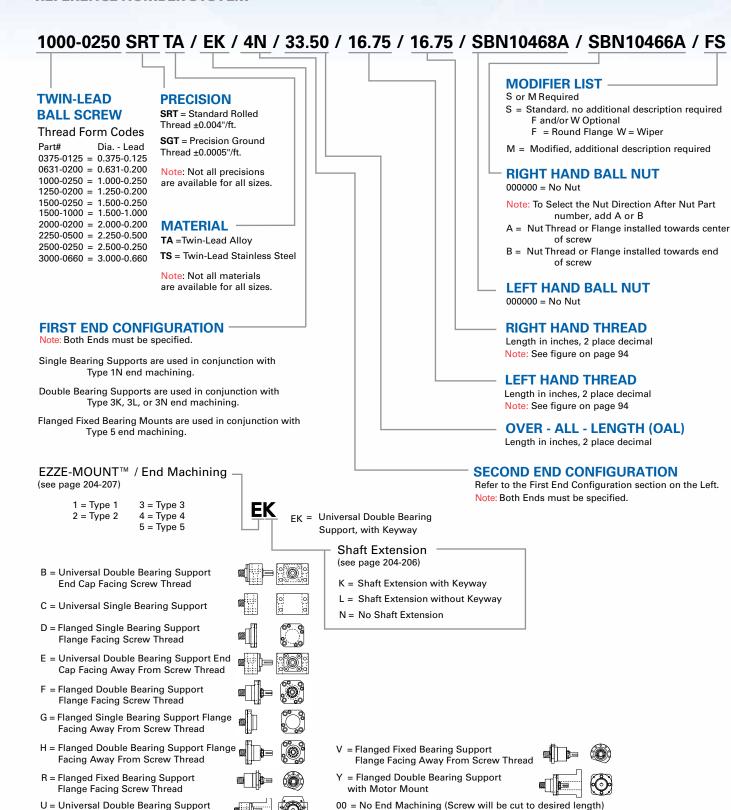
Stocked Sizes without End Machining

Screw	Root	Max	Max Usable	Incomplete _	Page n	iumber
Size Dia Lead	Dia (Min)	Overall Length	LH & RH Thread	Overlapping Thread Count	SRT	SGT
0375-0125	0.300	36	17.00	2.00	86	-
0631-0200	0.500	72	34.75	2.50	88	-
1000-0250	0.820	96	46.75	2.50	92	-
1250-0200	1.115	108	52.75	2.50	96	122
1500-0250	1.320	108	52.50	3.00	98	-
1500-1000	1.140	192	94.00	4.00	100	-

Sizes Available On Order

Screw	Root	Max	Max Usable	Incomplete	Page n	umber
 Size Dia Lead	Dia (Min)	Overall Length	LH & RH Thread	Overlapping Thread Count	SRT	SGT
2000-0200	1.849	140	69.00	0.25	-	136
2250-0500	1.850	192	93.50	4.00	102	-
2500-0250	2.320	192	94.00	4.00	104	-
3000-0660	2.480	192	93.50	6.00	106	-

Measurements in inches.



TWIN-LEAD BALL SCREW ASSEMBLIES

POWER•TRAC™
BALL SCREW ASSEMBLIES

REFERENCE NUMBER SYSTEM

- nookindustries.com

XX = Custom Machining (Print or specified data must be provided)

with Motor Mount

Torque to

Raise 1 lb

(in·lb)

0.177

0.035

0.035

0.073

0.035

0.088

0.044

0.044

0.044

0.084

0.088

0.176

0.176

0.332

0.088

0.088 0.177

0.177

0.044

0.044

0.088

0.117

0.266

0.177

0.177

POWER•TRAC™ BALL SCREW ASSEMBLIES

SRT ROLLED BALL SCREWS

SRT – Standard RolledThread (sometimes referred to as commercial or transport type) ball screws offer the low friction advantage of antifriction screws at lower cost. They are capable of higher speeds and longer predictable life when compared to similar acme type lead screws.

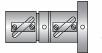
Offered in diameters from %" to 6" and leads from .125" to 1.875" depending on diameter, they are manufactured from the same high quality materials and produced following the same ISO certified procedures as higher precision screws. Most SRT screws are rolled, induction heat treated and black oxide coated. Three sizes are also available in 17-4 PH stainless steel.

SRT screws are offered with OD threaded, non-preloaded ball nuts, with optional mounting flanges and wipers. Some sizes are also available with integral flange nuts and/or with double nuts. Double nuts have a spring loaded adjustable preloading feature for eliminating backlash.

For convenience SRT screws can be supplied completely machined and assembled with nuts, flanges, wipers and EZZE-MOUNTS ready for assembly to your product. Should a standard assembly not fit the application, Nook can machine the screw to your specific design requirements.

SRT BALL NUTS

SBN Standard Ball Nut (no preload) - offers durable, low cost


linear motion. Mounting flanges and wiper kits can be installed on the SBN

SEL Standard Easy-Loc Adjustable Preload Ball Nut - designed

to eliminate the axial play or movement associated with standard ball nuts. Mounting flanges and wiper kits can be installed on the SEL nuts.

SAR Standard Adjustable Preload Ball Nut (Ground Ball Groove.

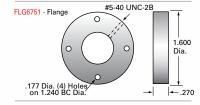
Integral Flange & Wipers) - offers the same high performance features found in precision ground thread ball nut assemblies with the added ability to run on rolled thread or ground thread screws. The SAR ball nut features adjustable preload, ground ball races, integral flange and wipers. The precision ground flange ensures alignment of the nut preventing unnecessary wear.

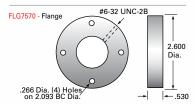
Precision hall screw assembly

SRT BALL SCREW QUICK REFERENCE

_							_					
D:	NI i	Screw	Load R	lating	Root	Torque to	Diameterland	NI	Screw	Load F	Rating	Root
Diameter-Lead	Nut	Material	Dynamic	Static	Dia. (in)	Raise 1 lb (in·lb)	Diameter-Lead	Nut	Material	Dynamic	Static	Dia. (in)
0.375-0.125	SBN	4150	136	1,415	0.300	0.022	1.000-1.000	SBN	4150	2,142	11,925	0.820
-	SBN	SS	24	255	0.300	0.022	1.150-0.200	SBN	4150	2,142	11,925	1.015
	SBN*	4150	272	2,830	0.300	0.022		SEL	4150	2,142	11,925	1.015
-	SBN*	SS	50	509	0.300	0.022	1.171-0.413	SBN	4150	3,894	22,917	0.870
0.500-0.200	SBN	4150	973	7,071	0.405	0.035	1.250-0.200	SBN	4150	3,336	34,688	1.115
0.500-0.500	SBN	4150	786	4,131	0.350	0.088	1.250-0.500	SBN	4150	2,745	17,235	1.050
	SBN	SS	141	744	0.350	0.088	1.500-0.250	SBN	4150	4,198	44,030	1.320
0.631-0.200	SBN	4150	815	6,384	0.500	0.035	_	SEL	4150	4,198	44,030	1.320
	SBN	SS	140	1,149	0.500	0.035		SAR	4150	4,198	44,030	1.320
	SBN**	4150	712	5,250	0.500	0.035	1.500-0.473	SBN	4150	10,050	57,770	1.140
	SEL	4150	815	6,384	0.500	0.035	1.500-0.500	SBN	4150	12,320	97,696	1.174
0.631-0.500	SBN	4150	960	5,565	0.500	0.088	1.500-1.000	SBN	4150	7,560	34,662	1.140
	SEL	4150	960	5,565	0.500	0.088		SEL	4150	7,560	34,662	1.140
0.631-1.000	SBN	4150	620	2,580	0.500	0.177	1.500-1.875	SBN	4150	7,242	29,895	1.188
0.750-0.200	SBN	4150	1,100	8,569	0.602	0.035	2.250-0.500	SBN	4150	21,306	142,660	1.850
	SBN*	4150	2,200	17,138	0.602	0.035		SAR	4150	21,306	142,660	1.850
	SEL	4150	2,200	17,138	0.602	0.035	2.250-1.000	SBN	4150	26,538	142,660	1.850
0.750-0.500	SBN	4150	2,723	17,425	0.602	0.088		SAR	4150	26,538	142,660	1.850
0.875-0.200	SBN	4150	1,942	18,063	0.735	0.035	2.500-0.250	SBN	4150	6,135	81,938	2.320
1.000-0.250	SBN	4150	1,612	13,913	0.820	0.044		SAR	4150	6,135	81,938	2.320
	SBN	SS	290	2,504	0.820	0.044	2.500-0.500	SBN	4150	21,200	186,660	2.320
	SBN*	4150	3,224	27,826	0.820	0.044	3.000-0.660	SBN	4150	44,316	271,733	2.480
	SEL	4150	1,612	13,913	0.820	0.044	3.000-1.500	SBN	4150	53,646	253,617	2.480
	SAR	4150	1,612	13,913	0.820	0.044	4.000-1.000	SBN	4150	85,758	476,970	3.338
1.000-0.500	SBN	4150	3,440	25,250	0.820	0.088	6.000-1.000	SBN	4150	115,507	443,548	5.232
_	SEL	4150	3,440	25,250	0.820	0.088	* double circuit ** internal return					

0375-0125 SRT 0500-0200 SRT 0500-0500 SRT


				BALL N	IT							SCREW		BALL NUT AC	CESSORIES	
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt.	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)			. Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
0375-0125 SRT single start	SBN9574	RH	0	136	1,415	60/60	0.0625	0.13	0.022	0.375	0.125	0.300	0.31	FLG6751	_	.750 Dia. — .664-32 NS-3
0.375 Ball Circle Dia. (in)	SBN9576	LH	0	136	1,415	60/60	0.0625	0.13	0.022	0.375	0.125	0.300	0.31	FLG6751	_	471
0.125 Lead (in)	SBN9578	RHSS	0	24	255	60/60	0.0625	0.13	0.022	0.375	0.125	0.300	0.31	_	_	1.00 Ref. → 1.00
	SBN7502	RH	0	272	2,830	60/120	0.0625	0.21	0.022	0.375	0.125	0.300	0.31	FLG6751	_	.750 Dia664-32 NS-3
	SBN8282	LH	0	272	2,830	60/120	0.0625	0.21	0.022	0.375	0.125	0.300	0.31	FLG6751	_	
	SBN7643	RHSS	0	50	509	60/120	0.0625	0.21	0.022	0.375	0.125	0.300	0.31	_	_	.460 R
	SEL0375	RH	10**	136	1,415	60/120	0.0625	0.21	0.022	0.375	0.125	0.300	0.31	FLG6751	_	.750 Dia
0500-0200 SRT single start 0.500 Ball Circle Dia. (in) 0.200 Lead (in)	SBN10094	RH	0	973	7,071	40/80	0.125	0.51	0.035	0.500	0.200	0.405	0.50	FLG7570	_	1.067 Dia
0500-0500 SRT double start	SBN9582	RH	0	786	4,131	30/60	0.125	0.27	0.088	0.500	0.500	0.360	0.50	FLG7570	_	+.755-+
0.500 Ball Circle Dia. (in) 0.500 Lead (in)	SBN9582E*	RHSS	0	141*	744*	30/60	0.125	0.27	0.088	0.500	0.500	0.360	0.50	FLG7570SS	_	.660 R +.375


^{*} Nut is nickel-plated, load rating calculated for stainless steel screw ** Not adjustible

STANDARD SCREW LENGTHS (Custom cut lengths available up to 12')

	0375-0125 RH	0375-0125 LH	0375-0125 RHSS	0500-0200 RH	0500-0500 RH	0500-0500 RHSS
2 ft	SRT9420	SRT8528	SRT6536	SRT5224	SRT6736	SRT6700
4 ft	SRT7538	SRT8532	SRT6540	SRT5248	SRT6740	SRT6704
6 ft	_	_	_	SRT5272	SRT6744	SRT6846

For longer lengths, contact Customer Service.

machining bearing supports p. 204 p. 202

0631-0200 SRT 0631-0500 SRT 0631-1000 SRT

				BALL N	UT						S	REW		BALL NUT A	CCESSORIES		
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper		BALL NUT DIMENSIONS
0631-0200 SRT single start 0.631 Ball Circle Dia. (in) 0.200 Lead (in)	SBN7645	RHSS	0	140	1,149	68/68	0.125	0.27	0.035	0.631	0.200	0.500	0.82	FLG7570SS	_	1.062 Dia	0.930
	SBN10325 SBN10583*	RH	0	815	6,384	68/68	0.125	0.27	0.035	0.631	0.200	0.500	0.82	FLG7570	WKB10407	1.062 Dia	7-9375-16 UN-2A
	SBN10409	LH	0	815	6,384	68/68	0.125	0.27	0.035	0.631	0.200	0.500	0.82	FLG7570	WKB10407		
	SBN10566	RH	0	712	5,250	60/60	0.125	0.27	0.035	0.631	0.200	0.500	0.82	FLG7570	_	1.125 Dia.	79375-16 UN-2A
	SBN10264	LH	0	712	5,250	60/60	0.125	0.27	0.035	0.631	0.200	0.500	0.82	FLG7570	_	J. 1	1.94
	SEL10408	RH	233	815	6,384	68/136	0.125	0.65	0.035	0.631	0.200	0.500	0.82	FLG7570	WKB10407	750 R	1.128 Dia9375-16 UN-2A
	SEL10410	LH	233	815	6,384	68/136	0.125	0.65	0.035	0.631	0.200	0.500	0.82	FLG7570	WKB10407		3.270 Ref → 1.500
0631-0500 SRT double start 0.631 Ball Circle Dia. (in) 0.500 Lead (in)	SBN10113	RH	0	960	5,565	37/74	0.125	0.27	0.088	0.631	0.500	0.500	0.82	FLG7570	_	1.200 Dia	1.000 Sq 1.710
	SEL10182	RH	288	960	5,565	37/148	0.125	0.65	0.088	0.631	0.500	0.500	0.82	FLG7570	_	1.200 Dia. 7.760	1.128 Dia.— .9375-16 UN-2A————————————————————————————————————
0631-1000 SRT four start 0.631 Ball Circle Dia. (in) 1.000 Lead (in)	SBN10392	RH	0	620	2,580	21/42	0.125	0.28	0.177	0.631	1.000	0.500	0.82	FLG7570	_	1.062 Dia. .750	.9375-16 UN-2A

^{*} Integral safety thread. See page 80.

	0631-0200 RHSS	0631-0200 RH	0631-0200 LH	0631-0500 RH	0631-1000 RH
2 ft	SRT5359	SRT9392	SRT9562	SRT6524	SRT6124
4 ft	SRT5648	SRT9987	SRT5092	SRT6548	SRT6148
6 ft	SRT5378	SRT7540	SRT7541	SRT6572	SRT6172

0750-0200 SRT 0750-0500 SRT 0875-0200 SRT

				BALL N	UT						SC	REW		BALL NUT A	CCESSORIES	
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
7750-0200 SRT ingle start .750 Ball Circle Dia. (in) .200 Lead (in)	SBN7201	RH	0	1,100	8,569	70/70	0.141	0.35	0.035	0.750	0.200	0.602	1.22	FLG7555	WKB7200	.886 R 1.312 Dia.—1.173-18 NS-3A
	SBN7202	RH	0	2,200	17,138	70/140	0.141	0.80	0.035	0.750	0.200	0.602	1.22	FLG7555	WKB7200	1.312 Dia. — 1.173-18 NS-3A 1.863 2.875
	SEL10057	RH	660	2,200	17,138	70/140	0.141	2.10	0.035	0.750	0.200	0.602	1.22	FLG7555	WKB7200	886 R 1.312 Dia 1.688 Dia 1.173-18 NS-3A 1.173-18 NS-3A 1.500
750-0500 SRT puble start 50 Ball Circle Dia. (in) 00 Lead (in)	SBN7500	RH	0	2,723	17,425	78/156	0.141	0.80	0.088	0.750	0.200	0.602	1.22	FLG7555	WKB7200	.937 R 1.312 Dia.————————————————————————————————————
875-0200 SRT ngle start 75 Ball Circle Dia. (in) 00 Lead (in)	SBN8277	RH	0	1,942	18,063	91/182	0.125	0.70	0.035	0.875	0.200	0.735	1.78	FLG8281	WKB2648	1.250 Dia. 1.545 Dia. 1.375-16 UN-3A
		SCREW LI 750-0200 RH	ENGTHS (Custo 0750-05 RH	-	available up t 8 75-0200 RH	o 24') FLG7555	5 - Flange	0		FLG8281 - Flange				WKB7200 - 2 wipe	ers/1 retainer Retainer	WKB2648 - 2 wipers/1 retainer Wiper Retainer

For longer lengths, contact Customer Service.

SRT7552

SRT7596

SRT7292

SRT8541

SRT8553

SRT8859

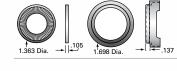
SRT7248

SRT7296

SRT7244

1000-0250 SRT 1000-0500 SRT

				BALL N	UT						S	REW		BALL NUT A	CCESSORIES	
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
000-0250 SRT ngle start	SBN10466	RH	0	1,612	13,913	86/86	0.156	0.8	0.044	1.000	0.250	0.820	2.2	FLG7571	WKB1050	1.563-18 NS-3A
000 Ball Circle Dia. (in)	SBN10468 SBN10470	LH RHSS	0	1,612 290	13,913 2,504	86/86 86/86	0.156 0.156	0.8	0.044	1.000 1.000	0.250	0.820 0.820	2.2	FLG7571 FLG7571SS	WKB1050 WKB1050	1,10 ———————————————————————————————————
30 Leau (III)	SBN10470	RH	0	3,224	27,826	86/172	0.156	1.2	0.044	1.000	0.250	0.820	2.2	FLG7571	WKB1050	1.687 Dia.— 1.563-18 NS-3A 1.15 R 1.563-18 NS-3A 1.563-18 NS-3A 1.563-18 NS-3A
	SBN8278 SBN8284	RH LH	0	3,224	27,826 27,826	86/172 86/172	0.156 0.156	1.5	0.044	1.000	0.250	0.820	2.2	integral	WKB2651 WKB2561	2.760 Dia. 1.625 Dia. 2.81 Dia. (4) Holes on 2.250 BC Dia. 1.107 R 3.000 3.75
	SEL10474 SEL10477	RH LH	330	1,612 1,612	13,913 13,913	86/172 86/172	0.156 0.156	1.9	0.044	1.000	0.250	0.820	2.2	FLG7571 FLG7571	WKB1050	1.8687 Dia- 1.15 R 4.847 Ref. 1.15 R 1.563-18 NS
	SAR3041	RH	330	1,612	13,913	86/172	0.156	2.0	0.044	1.000	0.250	0.820	2.2	integral	_	2.750 Dia. 1.620 Dia. 1.620 Dia. 1.620 Dia. 1.428 UNF-2B Lube Hole 2.81 Dia. 1.107 R (5) Holes on 2.250 BC Dia. 4.438 Ref
00-0500 SRT uble start 10 Ball Circle Dia. (in) 0 Lead (in)	SBN1050	RH	0	3,440	25,250	91/182	0.156	1.2	0.088	1.000	0.500	0.820	2.2	FLG7571	WKB1050	1.687 Dia.——1.563-18 UNEF-2A 1.080 1.687 Dia.——1.563-18 UNEF-2A 1.687 Dia.——1.625
	SEL10066	RH	817	3,440	25,250	91/364	0.156	2.6	0.088	1.000	0.500	0.820	2.2	FLG7571	WKB1050	1.687 Dia. 2.065 Dia. 1.563-18 UNEF-2


STANDARD SCREW LENGTHS	(Custom cut lengths available up to 24')
------------------------	--

	1000-0250 RH	1000-0250 LH	1000-0250 RHSS	1000-0500 RH
4 ft	SRT5005	SRT5499	SRT6668	SRT9990
8 ft	SRT5013	SRT5507	SRT6676	SRT9991
12 ft	SRT5021	SRT5515	SRT6684	SRT9992
16 ft	SRT5046	SRT5428	_	SRT9993

For longer lengths, contact Customer Service.

end EZZE-MOUNT™ engineering machining bearing supports tools p. 204 p. 202 p. 82

1000-1000 SRT 1150-0200 SRT

	-		1							
				BALL N	IUT					SCREW BALL NUT ACCESSORIES
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Lead Root Dia. Screw Wt. Dia. (in) (in) (in) (lb/ft) Flange Wiper BALL NUT DIMENSIONS
000-1000 SRT our start										1.687 Dia. —
000 Ball Circle Dia. (in) 000 Lead (in)	SBN10461	RH	0	2,142	11,925	50/100	0.156	1.11	0.177	1.000 1.000 0.820 2.20 FLG7571 WKB1050
	SEL10462	RH	300	2,142	11,925	50/200	0.156	2.50	0.177	1.000 1.000 0.820 2.20 FLG7571 WKB1050 1.687 Dia. 1.688 Dia. 1.
50-0200 SRT gle start 0 Ball Circle Dia. (in) 10 Lead (in)	SBN1566	RH	0	2,370	26,180	121/242	0.125	0.90	0.035	1.150 0.200 1.015 3.18 FLG8283 WKB2652 1.687 Dia. 1.625-20 UN-2A 1.107 R 1.625-20 UN-2A 1.107 R
	SEL4270	RH	240	1,185	13,090	121/242	0.125	1.34	0.035	1.150 0.200 1.015 3.18 FLG8283 WKB2652 1.687 Dia. 1.625-20 UN-2A 1.107 R 1.107 R 3.704 Ref. 3.704 R
	STANDARD S					o 24')				FLG8283 - Flange
		1000-1 RH		1150 F)-0200 RH					O FLG7571SS O Wiper Retainer
	4 ft	SRT68	314	SRT	8738					(o () o) 3.200 Dia. (o () o) 3.250 Dia.
	8 ft	SRT68	322	SRT	T8746					

.266 Dia. (4) Holes on 2.702 BC Dia: 495

1.500 Dia. → | ←.156 1.760 Dia. → | ←.137

WKB2652 - 2 wipers/1 retainer

.630-

12 ft

16 ft

SRT6830

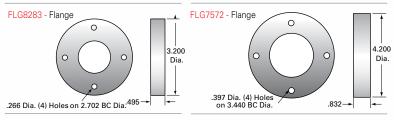
SRT0429

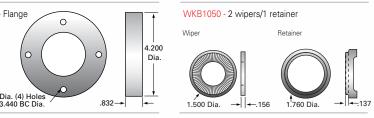
For longer lengths, contact Customer Service.

SRT8753

SRT0430

POWER•TRAC™ BALL SCREWS AND NUTS


1171-0413 SRT 1250-0200 SRT 1250-0500 SRT


	•			BALL N	IUT						SCR	EW		CCESSORIES		
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt.	Torque to Raise 1 lb (in·lb)	Ball Circle Lea Dia. (in) (in		oot Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
1171-0413 SRT single start 1.171 Ball Circle Dia. (in) 0.413* Lead (in) * actual lead is 0.41302	SBN7511	RH	0	3,894	22,917	28/56	0.281	1.90	0.073	1.171 0.4	113	0.870	2.77	FLG7572	WKB2653	2.125 Dia. — 1.967-18 NS-3 1.386 R + .812
1250-0200 SRT single start	SBN10627	RH	0	3,336	34,688	130/260	0.125	1.8	0.035	1.250 0.20	200	1.115	3.7	FLG8283	integral (elastomer)	R1.10 3.288 1.625-20 UN-2A
1.250 Ball Circle Dia. (in) 0.200 Lead (in)	SBN10189	LH	0	3,336	34,688	130/260	0.125	1.8	0.035	1.250 0.20	200	1.115	3.7	FLG8283	integral (elastomer)	1.27 1.648
1250-0500 SRT single start 1.250 Ball Circle Dia. (in) 0.500 Lead (in)	SBN10104	RH	0	2,745	17,235	46/92	0.188	1.8	0.088	1.250 0.50	500	1.050	3.7	FLG7572	integral (elastomer)	1.995 Dia. 2.09 Dia. 1.967-18 NS-3

STANDARD SCREW LENGTHS (Custom cut lengths available up to 24')

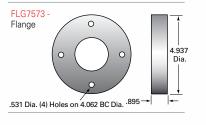
	1171-0413 RH	1250-0200 RH	1250-0200 LH	1250-0500 RH
4 ft	SRT9569	SRT1224	SRT1223	SRT1254
8 ft	SRT5035	SRT1228	SRT1227	SRT1258
12 ft	SRT5043	SRT1222	SRT1221	SRT1252
16 ft	SRT0432	SRT1226	SRT1225	SRT1256

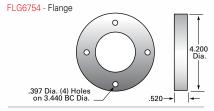

For longer lengths, contact Customer Service.

WKB2652 - 2 wipers/1 retainer

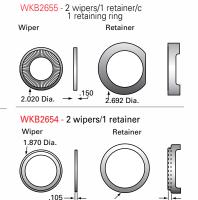
1500-0250 SRT 1500-0473 SRT

				BALL N	UT						SC	REW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
500-0250 SRT ingle start	SBN9587	RH	0	4,198	44,030	125/250	0.156	1.7	0.044	1.500	0.250	1.320	5.16	FLG6754	WKB2654	2.088 Dia
500 Ball Circle Dia. (in) 250 Lead (in)	SBN1990	LH	0	4,198	44,030	125/250	0.156	1.7	0.044	1.500	0.250	1.320	5.16	FLG6754	WKB2654	1.342 R — 2.875 — -500
	SEL4271	RH	920	4,198	44,030	125/500	0.156	3.0	0.044	1.500	0.250	1.320	5.16	FLG6754	WKB2654	2.088 Dia
	SEL4573	LH	920	4,198	44,030	125/500	0.156	3.0	0.044	1.500	0.250	1.320	5.16	FLG6754	WKB2654	1.342 R 6.375 Ref
	SAR3043	RH	920	4,198	44,030	125/500	0.156	6.0	0.044	1.500	0.250	1.320	5.16	integral	integral (brush)	3.500 Dia. 2.088 Dia
500-0473 SRT ngle start 00 Ball Circle Dia. (in) 173* Lead (in)	SBN7513	RH	0	10,050	57,770	43/86	0.344	3.9	0.084	1.500	0.473*	1.140	4.47	FLG7573	WKB2655	2.625 Dia. — 2.548-18 NS-3 1.613 R 4.312 — 4.312
ctual lead is 0.47368	SBN8345	RH	0	10,050	57,770	43/86	0.344	3.9	0.084	1.500	0.473*	1.140	4.47	_	WKB2656	3/8 x 3/16 Keyway 2.6255 Dia. 1.613 R 3.625

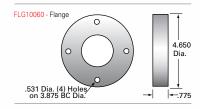

	1500-0250 RH	1500-0250 LH	1500-0473 LH
4 ft	SRT7012	SRT3252	SRT9610
8 ft	SRT7020	SRT3253	SRT9127
12 ft	SRT7028	SRT3254	SRT9624
16 ft	SRT0433	SRT0434	SRT0435

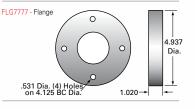

SRT0596

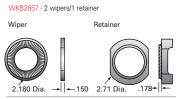
SRT0597


For longer lengths, contact Customer Service.

SRT0595




POWER•TRAC™ BALL SCREWS AND NUTS

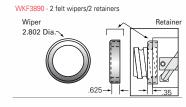

1500-0500 SRT 1500-1000 SRT 1500-1875 SRT

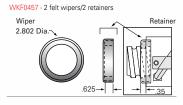
				BALL N	UT							SCI	REW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt.	Torque to Raise 1 lb (in·lb)	Ball C Dia.				Screw Wt.	Flange	Wiper	BALL NUT DIMENSIONS
1500-0500 SRT single start 1.500 Ball Circle Dia. (in) 0.500 Lead (in)	SBN1550	RH	0	12,320	97,696	65/130	0.312	5.2	0.088	1.51	00	0.500	1.174	5.25	FLG10060	integral (brush)	2.625 Dia. — 2.360-18 NS-3 1.656 1.810 R 5.590 -750
	SBN10974*	RH	0	12,320	97,696	65/130	0.312	5.2	0.088	1.51	00	0.500	1.174	5.25	FLG10060	integral (brush)	2.625 Dia. — — — — — — — — — — — — — — — — — — —
1500-1000 SRT double start	SBN8280	RH	0	7,560	34,662	30/60	0.344	3.9	0.176	1.50	600	1.000	1.140	4.47	FLG7777	WKB2657	2.625 Dia. — 2.250-20 UN-2A
1.500 Ball Circle Dia. (in) 1.000 Lead (in)	SBN1995	LH	0	7,560	34,662	30/60	0.344	3.9	0.176	1.50	00	1.000	1.140	4.47	FLG7777	WKB2657	1.720 R + 1.000
	SEL0698	RH	1650	7,560	34,662	30/120	0.344	9.1	0.176	1.50	000	1.000	1.140	4.47	FLG7777	WKB2657	3.025 Dia. — 2.250-20 UN-2A
	SEL0697	LH	1650	7,560	34,662	30/120	0.344	9.1	0.176	1.50	000	1.000	1.140	4.47	FLG7777	WKB2657	1.720 R + 1.000
1500-1875 SRT four start 1.500 Ball Circle Dia. (in) 1.875 Lead (in)	SBN7654	RH	0	7,242	29,895	44/88	0.281	4.2	0.332	1.50	00	1.875	1.188	5.25	FLG7777	WKB2657	2.625 Dia. — 2.250-20 UN-2A 1.680 R + 1.000

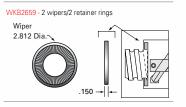
	1500-0500 RH	1500-1000 RH	1500-1000 LH	1500-1875 RH
4 ft	SRT9994	SRT8837	SRT1991	SRT7702
8 ft	SRT9995	SRT8845	SRT1992	SRT7710
12 ft	SRT9996	SRT8853	SRT2203	SRT7718
16 ft	SRT9997	SRT0436	SRT0437	SRT0438
20 ft	SRT9998	SRT0598	SRT0615	SRT0599

^{*} Integral safety thread. See page 80.

2250-0500 SRT 2250-1000 SRT

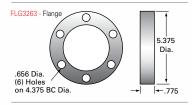

	BALL NUT									 SC	REW		CCESSORIES			
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt.	Torque to Raise 1 lb (in·lb)	Ball Circ Dia. (ir		Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
2250-0500 SRT single start	SBN7516 SBN10074*	RH	0	21,306	142,660	78/156	0.375	9.0	0.088	2.250	0.500	1.850	10.9	FLG7574	WKB2659 WKF3890	3.375 Dia. 3.137-12 NS-3
2.250 Ball Circle Dia. (in) 0.500 Lead (in)	SBN4000 SBN10075*	LH	0	21,306	142,660	78/156	0.375	9.0	0.088	2.250	0.500	1.850	10.9	FLG7574	WKB2659	2.272 R 1.562 + + + +
	SBN10629**	RH	0	21.306	142.660	48/156	0.375	9.0	0.088	2.250	0.500	1.850	10.9	FLG7574	WKB2659 WKF3890	3.375 Dia. 3.137-12 NS-3 1.562 + 7.062
	SAR3044	RH	6390	21,306	142,660	78/312	0.375	24.2	0.088	2.250	0.500	1.850	10.9	integral	integral (brush)	5.375 Dia. 3.375 Dia. 750 TYP 2.561 3.375 Dia. 750 1/8-27 NPT Lube Hole 1.582 +
2250-1000 SRT louble start .250 Ball Circle Dia. (in) 000 Lead (in)	SBN4555 SBN10260*	RH	0	26,538	142,660	83/166	0.375	9.0	0.177	2.250	1.000	1.850	10.9	FLG7574	WKB2659 WKF0457	3.375 Dia. 3.137-12 NS-3 1.958 2.300 R 6.719 1.562
	SAR2210	RH	7,960	26,538	142,660	83/332	0.375	9.0	0.177	2.250	1.000	1.850	10.9	integral	integral (brush)	5.375 Dia. 3.375 Dia. 750 1/8-27 NPT Lube Hole 1/8-27 NPT Lube Hole 1.582

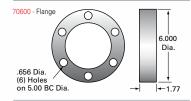

STANDARD SCREW LENGTHS (Custom cut lengths available up to 24')

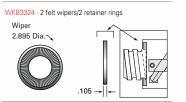

	2250-0500 RH	2250-0500 LH	2250-1000 RH
4 ft	SRT5051	SRT4001	SRT4556
8 ft	SRT5059	SRT4002	SRT4557
12 ft	SRT5067	SRT4003	SRT4558
16 ft	SRT0439	SRT0440	SRT0441
20 ft	SRT0600	SRT0602	SRT0604

.656 Dia. (6) Holes on 4.375 BC Dia.

- * Ball nuts with solid deflectors. See page 80.
- ** Ball nuts with integral safety thread and solid deflectors. See page 80.



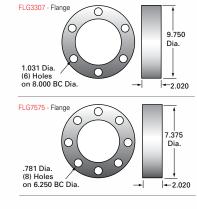

2500-0500 SRT

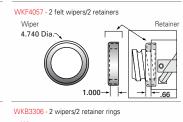

				BALL N	IUT							SC	REW		BALL NUT A	CCESSORIES	
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Cir Dia. (i	cle L n)	ead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
2500-0250 SRT single start	SBN3243	RH	0	6,135	81,938	158/474	0.156	4.7	0.044	2.50	0	.250	2.320	15.45	FLG3263	WKB3324	3.375 Dia
2.500 Ball Circle Dia. (in) 0.250 Lead (in)	SBN10329	LH	0	6,135	81,938	158/474	0.156	4.7	0.044	2.50	0	.250	2.320	15.45	FLG3263	WKB3324	2.306 -2.010 R -3.750 +.750
	SAR3242	RH	1,895	6,135	81,938	158/948	0.156	9.9	0.044	2.50) 0	.250	2.320	15.45	integral	integral (brush)	3.375 Dia
2500-0500 SRT single start 2.500 Ball Circle Dia. (in) 0.500 Lead (in)	SBN10316	RH	0	25,927	186,660	88/176	0.375	4.7	0.088	2.500) 0.	.500	2.320	15.45	70600	-	4.00 Dia. -3.625-12 UN-2A 1/8-27 NPT 3.00

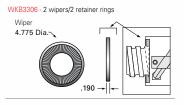
STANDARD SCREW	I FNGTHS (Custom c	ut lengths available up to 24')

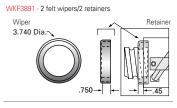
	2500-0250 RH	2500-0250 LH	2500-0500 RH
4 ft	SRT3255	SRT0400	SRT0405
8 ft	SRT3256	SRT0401	SRT0406
12 ft	SRT3257	SRT0402	SRT0407
16 ft	SRT0442	SRT0403	SRT0408
20 ft	SRT0606	SRT0404	SRT0409

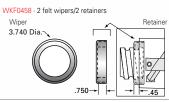
3000-0660 SRT 3000-1500 SRT 4000-1000 SRT

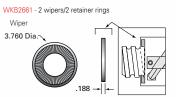

				BALL N	IUT							SCREW			BALL NUT A	CCESSORIES	
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	e Leac (in)			Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
000-0660 SRT ingle start	SBN10202*	RH	0	44,316	271,733	57/171	0.375	26	0.117	3.000	0.660) 2.4	80	19.6	FLG7575	WKB2661 WKF3891	4.750 Dia
000 Ball Circle Dia. (in) 660 Lead (in)	SBN10257	LH	0	44,316	271,733	57/171	0.375	26	0.117	3.000	0.660	2.4	80	19.6	FLG7575	WKB2661	-3.059 R -2.000
	SBN8347	RH	0	44,316	271,733	57/171	0.375	22	0.117	3.000	0.660) 2.4	80	19.6	_	_	1/2 × 1/4 Keyway 3.349 3.059 R 4.751 Dia.
000-1500 SRT ouble start 000 Ball Circle Dia. (in) 500 Lead (in)	SBN4986	RH	0	53,646	253,617	83/166	0.500	27.2	0.266	3.000	1.500) 2.4	80	19.3	FLG7575	WKB2661 WKF0458	4.750 Dia. 4.325-12 NS-3 2.928 3.134 R 9.375 + -2.000
000-1000 SRT ingle start	SBN3258*	RH	0	85,758	476,970	62/186	0.625	53.5	0.177	4.000	1.000) 3.3	38	34.4	FLG3307	WKB3306	5.875 Dia
000 Ball Circle Dia. (in) 000 Lead (in)	02:10203		Ü	00,700	470,070	02,100	0.020	00.0	5.177	4.000	1.000	, 0.0	00	07.7	. 20007	WKF4057	-3.756 R -12.593 -1 -2.00


STANDARD SCREW LENGTHS (Custom cut lengths available up to 24')


	3000-0660 RH	3000-0660 LH	3000-1500 RH	4000-1000 RH
4 ft	SRT5073	SRT0410	SRT4987	SRT3259
8 ft	SRT5080	SRT0411	SRT4988	SRT3260
12 ft	SRT5087	SRT0412	SRT4989	SRT3261
16 ft	SRT0443	SRT0413	SRT0444	SRT0624
20 ft	SRT0607	SRT0414	SRT0609	SRT3262


For longer lengths, contact Customer Service.


All 3-inch and 4-inch B.C.D. nuts are equipped with solid deflectors. See page 80.



^{*} Integral safety thread. See page 80.

				BALL N	IUT						S	CREW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Max. Adj. Preload (lb)	Dynamic Load (lb)	Static Load (lb)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
6000-1000 SRT single start 6.000 Ball Circle Dia. (in) 1.000 Lead (in)	SBN10438	RH	0	115,507	443,548	25/200	0.750	170	0.177	6.000	1.000	5.232	34.4	FLG10437	WKB10441	9.70 Dia. 1/8-27 NPT
±0.008 in/ft lead accuracy	SBN10442	RH	0	115,507	443,548	25/200	0.750	225	0.177	6.000	1.000	5.232	34.4	integral	integral (plastic)	1.312 Dia. (8) Holes on 12.250 BC Dia.

STANDARD SCREW LENGTHS (Custom cut lengths available up to 24')

No standard screw lengths.

All lengths will be quoted per drawing.

Nook ball screws are used in a wide variety of shipping applications

XPR PRECISION ROLLED

BALL SCREWS

XPR – Precision Rolled thread ball screws are offered from 5/8" to 21/4" diameters with leads of 0.200" to 0.500" depending on diameter. Nook Industries uses the latest in CNC thread rolling technology and state of the art CNC induction heat treatment to manufacture a rolled screw with accuracy approaching precision ground at a substantially lower cost.

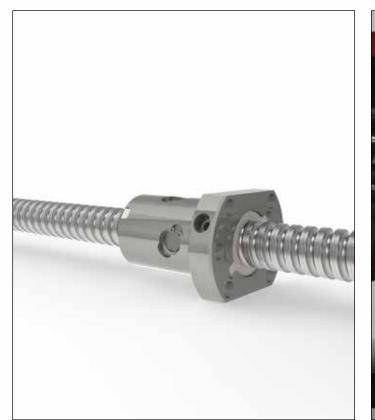
XPR screws fill the need for applications that don't warrant the expense for ground screws but still require more precise positioning than that offered by commercial grade screws. All are offered with internally preloaded non-adjustable ball nuts with either an integral flange or an OD thread which allows for the use of a custom flange to fit a specific need.

For convenience, XPR screws can be supplied completely machined and assembled with nuts and EZZE-MOUNTS ready for assembly to your product. Should a standard assembly not fit the application, Nook can machine the screw to your specific design requirements.

XPR BALL NUTS

SGN Standard Ground Nuts (V-thread, no preload) are similar to SBN

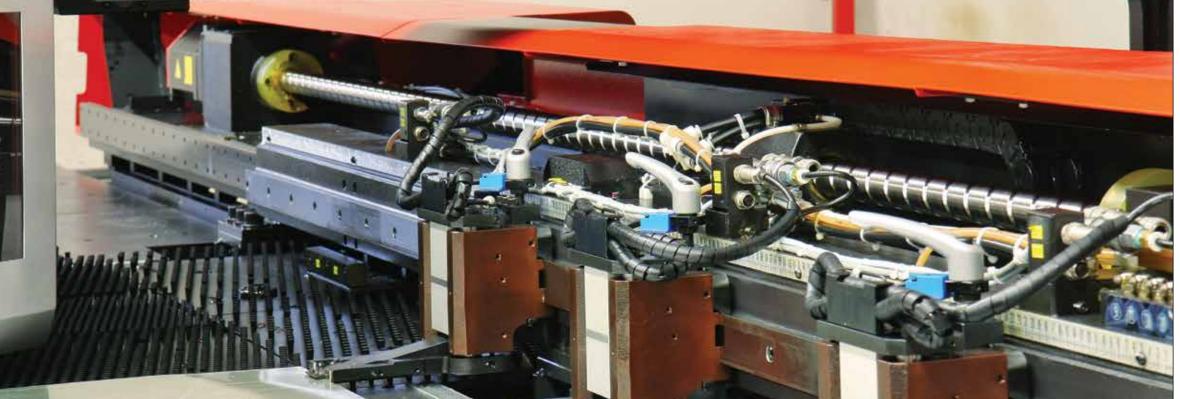
style ball nuts and have internal threads that are ground into the ball nut body. These nuts provide smooth, precise operation on rolled thread or ground thread ball screws.


PRN Standard Internal Preload Nuts (V-thread end with wipers) have a preload that is created by shifted internal threads

that are ground. The resulting concentricity ensures uniform preload. PRN ball nuts are compact and stiff due to the single nut integral preload configuration. Factory fitting on ball screws provides a backlash-free system with uniform torque, high stiffness and long life.

SSN Standard Internal Preload Nuts (Integral flange and wipers) have the same features as the PRN nut design while incorporating an integral flange

When loading an SSN or PRN style ball nuts on an XPR ball screw, depending on the length of the ball screw, the preload condition may vary. The fit between the ball nut and ball screw will range from a slight clearance (~.0005") to no-lash clearance throughout the travel, which may cause a minimal variation in tare drag torque. If a full preload is required select an SGT ground ball screw instead.


Precision ball screw

XPR BALL SCREW QUICK REFERENCE

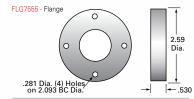
Diameter-Lead	Nut -	Load F	Rating	Root Dia. (in)	Torque to Raise 1 lb	
Diametei-Lead	Nut -	Dynamic	Static	-hoot Dia. (iii)	(in·lb)	
0.631-0.200	PRN*	440	2,110	0.500	0.035	
	SGN	700	3,360	0.500	0.035	
	PRN	350	1,690	0.500	0.035	
	SSN	440	2,110	0.500	0.035	
	SSN**	450	2,115	0.500	0.035	
0.750-0.200	PRN	1,473	9,916	0.602	0.035	
	SSN	1,473	9,916	0.602	0.035	
0.875-0.200	PRN	1,375	10,780	0.735	0.035	
	SSN	1,375	10,780	0.735	0.035	
1.000-0.250	PRN	2,285	15,815	0.820	0.044	
	SSN	2,285	15,815	0.820	0.044	
1.150-0.200	PRN	1,680	14,886	1.015	0.035	
	SSN	1,680	14,886	1.015	0.035	

Diameter-I ead	Nut	Load F	Rating		Torque to Raise 1 lb	
Diametei-Leau	Nut	Dynamic	Static	HOUL Dia. (III)	(in·lb)	
1.250-0.200	PRN	1,668	17,344	1.115	0.035	
	SSN	1,668	17,344	1.115	0.035	
1.250-0.500	PRN	1,765	11,080	1.050	0.088	
	SSN	1,765	11,080	1.050	0.088	
1.500-0.250	PRN	5,075	27,250	1.320	0.044	
	SSN	5,075	27,250	1.320	0.044	
1.500-0.500	PRN	5,650	35,522	1.174	0.088	
2.250-0.500	PRN	20,106	108,325	1.850	0.088	
	SSN	20,106	108,325	1.850	0.088	

- * preloaded nut with wipers
- ** internal return nut

CNC welding machine using precision ground ball screv

nookindustries.com

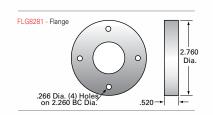

					BALL NU	Т						S	CREW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
631-0200 XPR ingle start 631 Ball Circle Dia. (in) 200 Lead (in)	PRN10108	RH	yes	440	2,110	1.6	30/60	0.125	0.98	0.035	0.631	0.200	0.500	0.86	FLG7555	integral (elastomer)	1.130 Dia.— 1.173-18 NS-3 1.312 Dia.— 1.312 Dia.— 2.324 4.437
	SGN10083	RH	no	700	3,360	_	30/60	0.125	0.80	0.035	0.631	0.200	0.500	0.86	FLG7570	_	1.130 Dia.— 9375-16 UN-2A
	PRN10106	RH	yes	350	1,690	1.0	30/60	0.125	0.80	0.035	0.631	0.200	0.500	0.86	FLG7570	_	1.130 Dia.— 9375-16 UN-2A 1.130 Dia.— 9375-16 UN-2A
	SSN0389	RH	yes	440	2,110	1.6	30/60	0.125	1.20	0.035	0.631	0.200	0.500	0.86	integral	integral (elastomer)	2.000 Dia. 1.130 Dia. 1.130 Dia. 1.14 - 28 UNF-2B Lube Hole (5) Holes on 1.562 BC Dia.
	SSN10304	RH	yes	450	2,115	1.5	64/64	0.125	0.45	0.035	0.631	0.200	0.500	0.86	integral	integral (elastomer)	1.375 0 1.25 0 1.125 0 1.125 0 1.375 0 45°

STANDARD SCREW LENGTHS (Custom cut lengths available up to 12')

0631-0200 RH

КП	
XPR6320R48	
XPR6320R72	

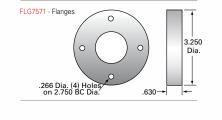
4 ft 6 ft



					BALL NU	Т						S	CREW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut		Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
0750-0200 XPR single start 0.750 Ball Circle Dia. (in) 0.200 Lead (in)	PRN10109	RH	yes	1,473	9,916	2.75	71/142	0.141	0.8	0.035	0.750	0.200	0.602	1.22	FLG8281	integral (elastomer)	1.370 Dia. 1.573 Dia. 1.375-16 UN-3A 859 Max 3.125
	SSN0390	RH	yes	1,473	9,916	2.75	71/142	0.141	0.8	0.035	0.750	0.200	0.602	1.22	integral	integral (elastomer)	2.300 Dia. 1.370
0875-0200 XPR single start 0.875 Ball Circle Dia. (in) 0.200 Lead (in)	PRN10110	RH	yes	1,375	10,780	1.10	93/186	0.125	1.10	0.035	0.875	0.200	0.735	1.80	FLG8281	integral (elastomer)	1.500 Dia.——1.375-16 UN-3A 1.250 Dia.——1.500 Dia.——1.500 1.011 Max 3.125
	SSN0388	RH	yes	1,375	10,780	3.10	93/186	0.125	0.14	0.035	0.875	0.200	0.735	1.80	integral	integral (elastomer)	2.250 Dia. 1.250 Dia. 1.250 Dia. 1.250 Dia. 1.4-28 UNF-2B Lube Hole 2.66 Dia. 1.50 Dia. 3.00 Ref

STANDARD SCREW LENGTHS (Custom cut lengths available up to 12')

	0750-0200 RH	0875-0200 RH
4 ft	XPR7520R48	XPR8720R48
6 ft	XPR7520R72	XPR8720R96



					BALL NU	JT					SCREW BALL NUT ACCESSORIE	6
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)		Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Lead Root Dia. Screw Wt. Dia. (in) (in) (lb/ft) Flange Wiper	BALL NUT DIMENSIONS
1000-0250 XPR single start 1.000 Ball Circle Dia. (in) 0.250 Lead (in)	PRN10115	RH	yes	2,285	15,815	2.50	86/172	0.156	1.10	0.044	1.000 0.250 0.820 2.20 FLG7571 –	1.12 R Max 1.625 Dia. Max 1.078 Max 1.000 1.000
	SSN10570	RH	yes	2,285	15,815	3.50	86/172	0.156	2.00	0.044	1.000 0.250 0.820 2.20 integral integral (elastome	2.875 Dia. 1.082 Max 1.117 R Max -344 Dia. (5) Holes on 2.250 BC Dia.

STANDARD SCREW LENGTHS (Custom cut lengths available up to 12')

1000-0250

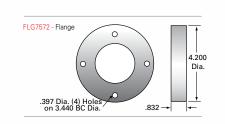
	RH
6 ft	XPR10025R72
12 ft	XPR10025R144

Nook ball screws in a laser marking application

	-				BALL NU	JT		1					CREW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt.	Torque to Raise 1 lb (in·lb)	Ball Circl Dia. (in)		Root Dia	. Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
150-0200 XPR Ingle start 150 Ball Circle Dia. (in) 200 Lead (in)	PRN10112	RH	yes	1,680	14,886	4.25	121/242	0.125	1.45	0.035	1.150	0.200	1.015	3.18	_	integral (elastomer)	1.085 R Max 1.685 Dia.—1.890 Dia.—1.767-18 NS-3A 1.166 Max — +.500 -3.125 Ref. —
	SSN0392	RH	yes	1,680	14,886	4.25	121/242	0.125	2.00	0.035	1.150	0.200	1.015	3.18	integral	integral (elastomer)	2.875 Dia. 1.685 Dia. 1.685 Dia. 2b Lube Hole 1/4 - 28 UNF 1.500
50-0200 XPR agle start 10 Ball Circle Dia. (in) 10 Lead (in)	PRN10191	RH	yes	1,668	17,344	4.25	130/260	0.125	1.80	0.035	1.250	0.200	1.115	3.70	_	integral (elastomer)	1.650 Dia.—1.75 Dia.——1.625-20 UN-2A 1.109 R 1.650 Dia.—1.75 Dia.——1.625-20 UN-2A 1.625-20 UN-2A 1.625-20 UN-2A
	SSN0393	RH	yes	1,668	17,344	4.25	130/260	0.125	1.80	0.035	1.250	0.200	1.115	3.70	integral	integral (elastomer)	-2.770 Dia. 1.650 Dia3.12 1.248 Max -1/4- 28 UNF- 2B Lube Hole -500 Ref500

STANDARD SCREW LENGTHS (Custom cut lengths available up to 12')

	1150-0200 RH	1250-0200 RH
6 ft	XPR11520R72	XPR12520R72
12 ft	XPR11520R144	XPR12520R144



1250-0500 XPR 1500-0250 XPR

					BALL NU	JT						S	CREW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
1250-0500 XPR single start 1.250 Ball Circle Dia. (in) 0.500 Lead (in)	PRN10087	RH	yes	1,765	11,080	4.25	46/92	0.188	2.75	0.088	1.250	0.500	1.050	3.70	FLG7572	integral (elastomer)	1.995 Dia.————————————————————————————————————
	SSN0399	RH	yes	1,765	11,080	4.25	46/92	0.188	3.20	0.088	1.250	0.500	1.050	3.70	integral	integral (elastomer)	3.865 Dia. 1.990 Dia. 1.340 Max 1.340 Max 1.340 Max 1.356 R Max 1.356 R Max 1.356 R Max 1.356 R Max 1.3580 Ref. 1.
1500-0250 XPR single start 1.500 Ball Circle Dia. (in) 0.250 Lead (in)	PRN10113	RH	yes	5,075	27,250	5.0	95/380	0.156	2.70	0.044	1.500	0.250	1.320	5.41	_	integral (elastomer)	2.250-16 UN-2A— 2.375 Dia.— 1.520 Max 2.020 Dia.— 2.375 Dia.— 2.375 Dia.— 2.375 Dia.— 4.625
	SSN0400	RH	yes	5,075	27,250	5.0	95/380	0.156	3.80	0.044	1.500	0.250	1.320	5.41	integral	integral (elastomer)	3.500 Dia. 2.020 Dia. 1.520 Max 1.302 R Max (5) Holes on 2.750 BC Dia. 2.020 Dia. 1/4-28 UNF-28 Lube Hole 5.000

STANDARD SCREW LENGTHS (Custom cut lengths available up to 12')

	1250-0500 RH	1500-0250 RH
6 ft	XPR12550R72	XPR15025R72
12 ft	XPR12550R144	XPR15025R144

2250-0500 XPR

				l	BALL NUT							S	CREW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut		Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
00-0500 XPR gle start	PRN10114	RH	yes	5,650	35,522	5.2	48/96	0.312	3.5	0.088	1.500	0.500	1.174	5.3	_	integral (elastomer)	2.630 Dia. — — — — — — — — — — — — — — — — — — —
Ball Circle Dia. (in) Lead (in)		,															-1.810 R750
60-0500 XPR gle start D Ball Circle Dia. (in)	PRN10089	RH	yes	20,106	108,325	7.25	99/198	0.375	10.5	0.088	2.250	0.500	1.850	10.8	_	integral (elastomer)	3.375 Dia. — 3.650 Dia. — 3.527-12 NS-3
Lead (in)																	2.259 R Max 8.125 + 1.060
	SSN0402	RH	yes	20,106	108,325	7.25	99/198	0.375	15.2	0.088	2.250	0.500	1.850	10.8	integral	integral (elastomer)	60° TYP 2.367 Max 2.259 R Max (5) Holes On 4.375 BC Dia. 3.375 Dia. 1/4-28 UNF-2B Lube Hole 1,250 + 1,250

STANDARD SCREW LENGTHS (Custom cut lengths available up to 12')

	1500-0500 RH	2250-0500 RH
6 ft	XPR15050R72	XPR22550R72
12 ft	XPR15050R144	XPR22550R144

SGT PRECISION GROUND

BALL SCREWS

SGT - Standard Ground Thread screws are available in diameters from 5%" to 2½" in lengths up to 120". Threads are ground from high carbon alloy steel that has been induction heat treated to a depth greater than the thread. Standard stocked screws have a lead accuracy tolerance of ±0.0005 in/ft and are supplied with internally preloaded nuts which must be factory assembled. Ground screws are used for applications that require smooth operation, precise positioning, and repeatability.

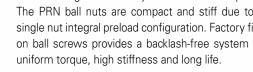
For convenience, SGT screws can be supplied completely machined and assembled with nuts and EZZE-MOUNTS ready for assembly. Should a standard assembly not fit the application, Nook can machine the screw to your specific design requirements. Ball nut configurations can be engineered to application requirements.

SGT BALL NUTS

SGN Standard Ground Nuts (V-thread, no preload) – are similar to SBN

style ball nuts and have internal threads that are ground into the ball nut body. These nuts provide smooth, precise operation on rolled thread or ground thread ball screws.

SAG Standard Adjustable Preload Ball Nuts (Ground Ball Groove.


Integral Flange and Wipers) – offer the precision tolerances of ground ball screw systems with the flexibility of adjustable preload.

PRN or PGN Standard Internal Preload Nuts (V-thread end with wipers) have a preload that is created by shifted

internal threads that are ground in a single set-up. The resulting concentricity ensures uniform preload. The PRN ball nuts are compact and stiff due to the single nut integral preload configuration. Factory fitting on ball screws provides a backlash-free system with

SSN Standard Internal Preload Nuts (Integral flange and wipers) have the same features as the PRN nut design while incorporating an integral flange.

SGT BALL SCREW QUICK REFERENCE

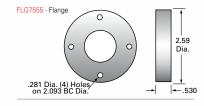
Diameter-Lead	Nut	Load R	ating	Root Dia.	Torque to Raise
Diameter-Leau	Nut	Dynamic	Static	(in)	1 lb (in·lb)
0631-0200	PRN*	440	2,110	0.500	0.035
	SGN	700	3,360	0.500	0.035
	PRN	350	1,690	0.500	0.035
	SSN	440	2,110	0.500	0.035
	SSN**	450	2,115	0.500	0.035
0750-0200	PRN	1,473	9,916	0.602	0.035
	SSN	1,473	9,916	0.602	0.035
0875-0200	PRN	1,375	10,780	0.735	0.035
	SSN	1,375	10,780	0.735	0.035
1000-0200	SSN	1,565	13.073	0.865	0.035
1000-0250	PRN	2,285	15,815	0.820	0.044
	SSN	2,285	15,815	0.820	0.044
	SAG	2,285	15,815	0.820	0.044
1150-0200	PRN	1,680	14,886	1.015	0.035
	SSN	1,680	14,886	1.015	0.035
1250-0200	PRN	1,668	17,344	1.115	0.035
	SSN	1,668	17,344	1.115	0.035

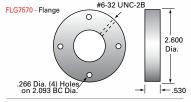
Diameter-Lead	Nut	Load F	Rating	Root Dia.	Torque to Raise
Diametel-Lead	INUL	Dynamic	Static	(in)	lb (in·lb)
1250-0500	PRN	1,765	11,080	1.050	0.088
	SSN	1,765	11,080	1.050	0.088
1500-0250	PRN	5,075	27,250	1.320	0.044
	SSN	5,075	27,250	1.320	0.044
	SAG	5,950	44,030	1.320	0.044
1500-0500	SSN	4,250	35,770	1.123	0.088
2000-0200	SSN	6,181	65,903	1.849	0.035
2000-0400	SSN	12,830	72,360	1.742	0.070
2250-0500	PRN	20,106	108,325	1.850	0.088
	SSN	20,106	108,325	1.850	0.088
	SAG	30,000	142,660	1.850	0.088
2500-0250	SAG	8,945	93,165	2.333	0.044
	SSN	8,945	93,165	2.333	0.044

- * preloaded nut with wipers
- ** internal return nut

Nook 2 00" diameter hall nuts

Nook precision ball screws are used widely in the aerospace industry



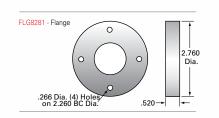

					BALL NU	Т					'		S	REW		BALL NUT A	CCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball C Dia.		Lead (in)	Root Dia.	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
0631-0200 SGT single start 0.631 Ball Circle Dia. (in) 0.200 Lead (in)	PRN10108	RH	yes	440	2,110	1.6	30/60	0.125	0.98	0.035	0.63	31	0.200	0.500	0.86	FLG7555	integral (elastomer)	1.130 Dia. 7 1.173-18 NS-3 1.312 Dia. 7 1
	SGN10083	RH	no	700	3,360	_	30/60	0.125	0.80	0.035	0.63	31	0.200	0.500	0.86	FLG7570	_	1.130 Dia.— 9375-16 UN-2A
	PRN10106	RH	yes	350	1,690	1.0	30/60	0.125	0.80	0.035	0.63	31	0.200	0.500	0.86	FLG7570	_	1.130 Dia. 9375-16 UN-2A
	SSN0389	RH	yes	440	2,110	1.6	30/60	0.125	1.20	0.035	0.63	31	0.200	0.500	0.86	integral	integral (elastomer)	2.000 Dia. 1.130 Dia. 1.130 Dia. 1.14 - 28 UNF-2B Lube Hole (5) Holes on 1.562 BC Dia.
	SSN10304	RH	288	450	2,115	1.5	64/64	0.125	0.45	0.035	0.63	31	0.200	0.500	0.86	integral	integral (elastomer)	1.375 0 1/4-28 UNF-2B 0 1.125 1.375 0 45° 1.38

STANDARD SCREW LENGTHS (Custom cut lengths available up to 8')

0631-0200 RH

4 ft GT06320R48




0750-0200 SGT 0875-0200 SGT

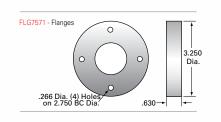
					BALL NU	T							SCF	REW		BALL NUT A	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt.	Torque to Raise 1 lb (in·lb)	Ball Circ Dia. (in		ad f	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
0750-0200 SGT single start 0.750 Ball Circle Dia. (in) 0.200 Lead (in)	PRN10109	RH	yes	1,473	9,916	2.75	71/142	0.141	1.0	0.035	0.750	0.2	200	0.602	1.22	FLG8281	integral (elastomer)	Rad Max 1.370 Dia. 1.573 Dia. 1.375-16 UN-3A 8.59 Max 3.125
	SSN0390	RH	yes	1,473	9,916	2.75	71/142	0.141	1.2	0.035	0.750	0.2	200	0.602	1.22	integral	integral (elastomer)	2.300 Dia. 1.370 Dia. 3.281 Dia. 2.81 Dia. 3.00 Ref. 4.28 UNF-2B Lube Hole
0875-0200 SGT single start 0.875 Ball Circle Dia. (in) 0.200 Lead (in)	PRN10110	RH	yes	1,375	10,780	3.10	93/186	0.125	1.1	0.035	0.875	0.2	200	0.735	1.80	FLG8281	integral (elastomer)	1.250 Dia.— 1.011 Max 1.250 Dia.— 1.500 Di
	SSN0388	RH	yes	1,375	10,780	3.10	93/186	0.125	1.4	0.035	0.875	0.2	200	0.735	1.80	integral	integral (elastomer)	2.250 Dia. 1.250 Dia. 1.250 Dia. 1.011 Max 1.428 UNF-2B Lube Hole

STANDARD SCREW LENGTHS (Custom cut lengths available up to 8')

	0750-0200 RH	0875-0200 RH
4 ft	GT07520R48	GT08720R48

For longer lengths, contact Customer Service.

nookindustries.com

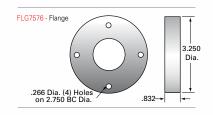

1000-0200 SGT 1000-0250 SGT

					BALL N	JT						S	CREW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt.	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
000-0200 SGT ingle start	SSN0391	RH	yes	1,565	13,073	3.50	107/214	0.125	1.50	0.035	1.000	0.200	0.865	2.20	integral	integral (elastomer)	2.750 Dia. 1.620 Dia. 1.051 Max
200 Lead (in)																	344 Dia. (5) Holes on 2.250 BC Dia. (1.055 R Max 3.00 Ref
000-0250 SGT ngle start 00 Ball Circle Dia. (in)	PGN11172	RH	yes	2,285	15,815	2.50	86/172	0.156	1.10	0.044	1.000	0.250	0.820	2.20	FLG7571	_	1.12 R Max 1.625 Dia. Max 1.625 Dia. Max 1.625 Dia. Max
50 Lead (in)																	3.100
	SSN0404	RH	yes	2,285	15,815	3.50	86/172	0.156	2.00	0.044	1.000	0.250	0.820	2.20	integral	integral (elastomer)	2.875 Dia. 1.685 Dia. 1.685 Dia. 1.082 Max 1.117 R Max -344 Dia. (5) Holes on 2.250 BC Dia. 3.370 Ref. 3.370 Ref.

STANDARD SCREW LENGTHS (Custom cut lengths available up to 9')

1000-0250 RH

6 ft GT10025R72



1150-0200 SGT 1250-0200 SGT

					BALL NU	Т						S	CREW	,	BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia	Screw Wt.	Flange	Wiper	BALL NUT DIMENSIONS
1150-0200 SGT single start 1.150 Ball Circle Dia. (in) 0.200 Lead (in)	PRN10112	RH	yes	1,680	14,886	4.25	121/242	0.125	1.45	0.035	1.150	0.200	1.015	3.18	FLG7576	integral (elastomer)	1.085 R Max 1.685 Dia.—1.890 Dia.—1.767-18 NS-3A 1.166 Max
	SSN0392	RH	yes	1,680	14,886	4.25	121/242	0.125	2.00	0.035	1.150	0.200	1.015	3.18	integral	integral (elastomer)	2.875 Dia. 1.685 Dia. 1.685 Dia. 2.875 Dia. 1.685 Dia. 2.875 Dia. 1.685 Dia. 2.875 Dia. 3.000 —312 2.875 Dia. 2.875 Dia. 3.000 —312
1250-0200 SGT single start	PRN10191	RH	yes	1,668	17,344	4.25	130/260	0.125	1.80	0.035	1.250	0.200	1.115	3.70	_	integral (elastomer)	1.650 Dia.— 1.75 Dia.— 1.625-20 UN-2A
1.250 Ball Circle Dia. (in) 0.200 Lead (in)	PRN10193	LH	yes	1,668	17,344	4.25	130/260	0.125	1.80	0.035	1.250	0.200	1.115	3.70	_	integral (elastomer)	1.109 R600
	SSN0393	RH	yes	1,668	17,344	4.25	130/260	0.125	1.80	0.035	1.250	0.200	1.115	3.70	integral	integral (elastomer)	72.770 Dia. 1.650 Dia. +.312
	SSN0398	LH	yes	1,668	17,344	4.25	130/260	0.125	1.80	0.035	1.250	0.200	1.115	3.70	integral	integral (elastomer)	.344 Dia.— 1.109 R Max (5) Holes on 2.312 BC Dia3.00 Ref +500

STANDARD SCREW LENGTHS (Custom cut lengths available up to 9')

	1150-0200	1250-0200	1250-0200
	RH	RH	LH
6 ft	GT11520R72	GT12520R72	GT12520L72

					BALL NU	JT							CREW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut		Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Circ Dia. (ir		Root D (in)	a. Screw Wt.	Flange	Wiper	BALL NUT DIMENSIONS
1250-0500 SGT single start 1.250 Ball Circle Dia. (in)	PRN10087	RH	yes	1,765	11,080	4.25	46/92	0.188	2.75	0.088	1.250	0.500	1.050	3.70	FLG7572	integral (elastomer)	1.995 Dia. 1.967-18 NS-3
0.500 Lead (in)	SSN0399	RH	yes	1,765	11,080	4.25	46/92	0.188	3.20	0.088	1.250	0.500	1.050	3.70	integral	integral (elastomer)	3.865 Dia. 1.990 Dia
1500-0200 SGT single start 1.500 Ball Circle Dia. (in) 0.200 Lead (in)	SSN0394	RH	yes	4,745	45,073	5.0	137/548	0.141	3.80	0.035	1.500	0.200	1.349	5.65	integral	integral (elastomer)	3.500 Dia. 2.020 Dia. 1.469 Max 1.428 UNF- 2B Lube Hole 5.000 -625
1500-0250 SGT single start .500 Ball Circle Dia. (in)	PRN10113	RH	yes	5,075	27,250	5.0	95/380	0.156	2.70	0.044	1.500	0.250	1.320	5.41	_	integral (elastomer)	2.250-16 UN-2A— 2.375 Dia.— 1.520 Max 2.020 Dia.— 2.375 Dia.— 2.375 Dia.— 2.375 Dia.— 2.375 Dia.—
NEON FOOT (III)	SSN0400	RH	yes	5,075	27,250	5.0	95/380	0.156	3.80	0.044	1.500	0.250	1.320	5.41	integral	integral (elastomer)	3.500 Dia. 3.500 Dia. 3.500 Dia. 2.020 Dia. 3.44 Dia. 3.44 Dia. 3.44 Dia. (5) Holes on 2.750 BC Dia.
	SAG0705	RH	920 max.	5,950	44,030	_	95/380	0.156	6.00	0.044	1.500	0.250	1.320	5.41	integral	integral (brush)	3.500 Dia. 2.088 Dia. +:378 TYP 1.604 3.44 Dia. 1.342 R (5) Holes on 2.750 BC Dia. 6.815 Ref. +:62

STANDARD SCREW LENGTHS (Custom cut lengths available up to 10')

	1250-0500 RH	1500-0200 RH	1500-0250 RH
6 ft	GT12550R72	GT15020R72	GT15025R72
10 ft	_	GT15020R120	GT15025R120

For longer lengths, contact Customer Service.

FLG7572 - Flange

1500-0500 SGT 2000-0200 SGT

					BALL NU	JT						S	CREW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)	Static Load (lb)	Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut	Nominal Ball Dia. (in)		Torque to Raise 1 lb (in·lb)	Ball Circle Dia. (in)	Lead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
1500-0500 SGT single start	SSN0401	RH	yes	4,250	35,770	5.0	48/96	0.250	3.80	0.088	1.500	0.500	1.123	5.30	integral	integral (elastomer)	3.875 TVP 2.250 Dia
1.500 Ball Circle Dia. (in) 0.500 Lead (in)																(0.00.0	.406 Dia. 1.575 R Max [5] Holes On 3.125 Bc Dia. 1/4-28 UNF-2B - 4.625 - 4.625
2000-0200 SGT single start	SSN0396	RH	yes	6,181	65,903	6.50	138/828	0.141	4.50	0.035	2.000	0.200	1.849	9.9	integral	integral (elastomer)	4.000 Dia. 2.500 Dia
2.000 Ball Circle Dia. (in) 0.200 Lead (in)																(clastoffici)	.406 Dia. (5) Holes on 3.250 BC Dia. 1.550 R Max -5.750 -1.5750 -1.5700
	SSN10267	LH	yes	6,181	65,903	6.50	138/828	0.141	4.50	0.035	2.000	0.200	1.849	9.9	integral	integral (elastomer)	4.000 Dia. 2.500 Dia. 1,009 Max 1,428 UNF-2B Lube Hole -,700 -,

STANDARD SCREW LENGTHS (Custom cut lengths available up to 10')

	1500-0500 RH	2000-0200 RH	2000-0200 LH
6 ft	GT15050R72	GT20020R72	GT20020L72
10 ft	GT15050R120	GT20020R120	GT20020L120

2500-0250 SGT

				E	BALL NUT								SC	REW		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Preload	Dynamic Load (lb)		Spring Rate × 10 ⁶ (lb/in)	Balls per Circuit/Nut	Nominal Ball Dia. (in)	Nut Wt. (lb)	Torque to Raise 1 lb (in·lb)	Ball Cir Dia. (i		₋ead (in)	Root Dia. (in)	Screw Wt. (lb/ft)	Flange	Wiper	BALL NUT DIMENSIONS
2250-0500 SGT single start 2.250 Ball Circle Dia. (in) 0.500 Lead (in)	PRN10089	RH	yes	20,106	108,325	7.25	99/198	0.375	10.5	0.088	2.25(· C	.500	1.850	10.8	_	integral (elastomer)	3.375 Dia.— 3.650 Dia.— 3.527-12 NS-3 Wax -2.259 R Max -8.125
	SSN0402	RH	yes	20,106	108,325	7.25	99/198	0.375	15.2	0.088	2.250	C	.500	1.850	10.8	integral	integral (elastomer)	60° TYP 2.367 Max 2.259 R Max (5) Holes On 4.375 BC Dia. 3.375 Dia. 3.375 Dia. 1/4-28 UNF-28 Lube Hole
	SAG0706	RH	6,390 max	30,000	142,660	_	99/396	0.375	24.2	0.088	2.25(C	.500	1.850	10.8	integral	integral (brush)	5.375 Dia. TYP 2.561 3.375 Dia. 7.750 1/8-27 NPT Lube Hole 1.582 + 1.582
2500-0250 SGT single start 2.500 Ball Circle Dia. (in) 0.500 Lead (in)	SAG0707	RH	1,895 max.	8,945	93,165	_	158/948	0.156	9.9	0.044	2.500	C	.250	2.333	15.45	integral	integral (brush)	3.375 Dia 3.375 Dia 2.500 1/P 2.306 2.306 2.010 R (5) Holes on 4.00 BC Dia. 3.375 Dia 2.250 1/8 Dia. Lube Hole 7.490 Ref
	SSN0403	RH	yes	8,945	93,165	8.00	158/948	0.156	9.0	0.044	2.500	C	.250	2.333	15.45	integral	integral (elastomer)	3.375 Dia. —

STANDARD SCREW LENGTHS (Custom cut lengths available up to 10')

	2250-0500 RH	2500-0250 RH
6 ft	GT22550R72	GT25025R72
10 ft	GT22550R120	GT25025R120

SMALL DIAMETER METRIC

BALL SCREWS

With four decades of experience in the precision manufacturing world, Nook Industries has expanded its PowerTrac™ product offering to include standard small diameter metric ball screws. Our small diameter screws are available in both alloy and stainless steel and provide design engineers a globally accepted product for smaller footprint applications where high accuracy, repeatability, and durability are required.

Nook Industries produces many custom small diameter ball screws and nuts for the aerospace and medical industries each year. As a result of this experience, Nook offers standard miniature ball screws and nuts for the commercial market.

Nook miniature ball screws are used to guide missiles and rockets

6 x 1.25 mm precision ball screw

Nook miniature ball screws are used in medical devices

MINI BALL SCREWS

KEYED VERSION

V-THREAD VERSION

					BALL NU	JT								Sc	CREW			
Dia. × Lead (mm)	Ball Nut Number	Screw Material	Helix	Dynamic Load (N)	Static Load (N)	C (mm)	H (mm)	E (mm)	F (mm)	G (mm)	Lash	Nut W	Torque to /t. Raise 1 kN (N·m)	Reference number	A (mm)	B (mm)	Screw Wt. (g/m)	BALL NUT DIMENSIONS
6 × 1.25	MBN10727	SS	RH	258	253	13.0	17.2	8.61	2.0	1.20	0.025	9.5	0.221	6×1.25 MRT RH SS	6.2	5.6	215	
8 × 2.5	MBN10828	4150	RH	1,407	1,638	18.0	18.6	7.7	3.0	1.80	0.045	20	0.443	8×2.5 MRT RH	7.8	6.6	321	
8 × 2.5	MBN10729	SS	RH	480	623	18.0	18.6	7.7	3.0	1.80	0.045	20	0.443	8×2.5 MRT RH SS	7.8	6.6	321	G
10 × 2	MBN10832	4150	RH	1,259	1,514	20.0	22	12.0	3.0	1.80	0.038	29	0.354	10×2 MRT RH	9.5	8.2	464	
10 × 2	MBN10733	SS	RH	1,259	1,514	20.0	22	12.0	3.0	1.80	0.038	29	0.354	10×2 MRT RH	9.5	8.2	464	
14 × 3	MBN11125	4150	RH	5,812	10,340	24.0	40	20.0	5.0	3.00	0.076	110	0.472	14×3 MRT RH	13.5	11.9	1021	G H A B C C

		BALL NUT													CREW				
Dia. × Lead (mm)	Ball Nut Number	Screw Material	Helix	Dynamic Load (N)	Static Load (N)	C (mm)	D (mm)	H (mm)	K (mm)	R (mm)	Lash	Nut W	Torque to /t. Raise 1 kN (N·m)		A (mm)		Screw Wt. (g/m)		BALL NUT DIMENSIONS
6 × 2	MBN10922	SS	RH	751	719	16.0	M12 × 1	22.0	8.0	8.5	0.076	18	0.354	6×2 MRT RH SS	5.8	4.5	161	R	H K- D
6 × 1.25	MBN10636	SS	RH	258	253	14.5	M12 × 1	17.2	6.1	9.32	0.025	8.6	0.221	6×1.25 MRT RH SS	6.2	5.6	215		
8 × 2.5	MBN10830	4150	RH	1,407	1,638	17.5	M15 × 1	24.0	8.0	12.3	0.045	20	0.443	8×2.5 MRT RH	78	6.6	338	- R	H——H———
8 × 2.5	MBN10731	SS	RH	480	623	17.5	M15 × 1	24.0	8.0	12.3	0.045	20	0.443	8×2.5 MRT RH SS	78	6.6	338		D
8 × 6	MBN10961	4150	RH	1,343	1,632	17.5	M15 × 1	24.0	8.0	12.3	0.076	25.4	1.060	8×6 MRT RH	7.8	6.6	329		c Manager i i
8 × 6	MBN10924	SS	RH	592	480	17.5	M15 × 1	24.0	8.0	12.3	0.076	25.4	1.060	8×6 MRT RH SS	7.8	6.6	329		
10 × 2	MBN10834	4150	RH	1,259	1,514	19.5	M17 × 1	22.0	8.0	15.7	0.038	21.7	0.354	10×2 MRT RH	9.5	8.2	464		
10 × 2	MBN10757	SS	RH	560	444	19.5	M17 × 1	22.0	8.0	15.7	0.038	21.7	0.354	10×2 MRT RH SS	9.5	8.2	464		
12 × 2.5	MBN11112	4150	RH	2,980	4,960	25.5	M20 × 1.5	39.0	8.0		0.076	99.0	0.443	12×2.5 MRT RH	11.75	10.2	763		K H D D D D D D D D D D D D D D D D D D
14 × 3	MBN1123	4150	RH	5,812	10,340	24.0	M24 × 2	35.0	12.0	_	0.076	105.0	0.478	14×3 MRT RH	13.5	11.9	1021	+	C B A

◀ shoulder againt this face for mounting

Precision heat-treatment of ball screws

METRIC BALL SCREWS

Nook Industries has expanded the PowerTrac™ offering to include metric ball screws, providing design engineers a globally accepted product. Metric ball screws are available in many diameters, leads, and pitches.

Metric ball screws are available with internal, low profile external, or external return guide ball nuts. Several Nook metric products are available with preloaded ball nut systems. See the metric ball screw product technical data pages on 149-161 for additional detail.

MRT and PMT BALL SCREWS

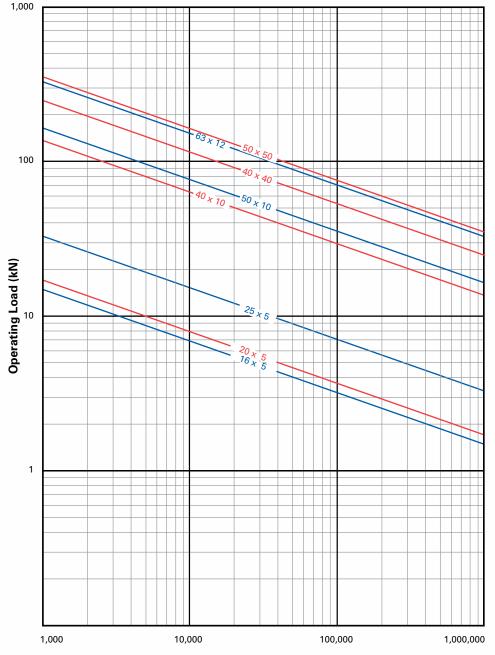
These screw assemblies are similar in construction and materials to PowerTrac $^{\text{TM}}$ Inch Ball Screws and Nuts.

MRT Standard lead accuracy: ±100µm / 300mm

PMT Standard lead accuracy: ±25µm / 300mm

Temperature Range: For standard applications: -20° to +80° C

Wipers: Plastic


50 x 10 precision metric ball screw

LIFE EXPECTANCY: METRIC MRT AND PMT BALL SCREWS

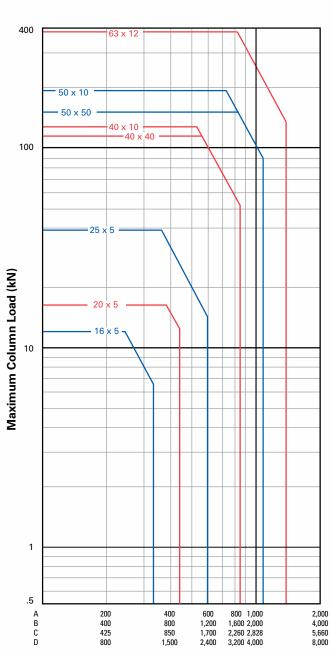
TO USE THIS CHART:

- 1. Determine required Life (in meters of travel) at equivalent operation load.
- 2. Find point at which load and life requirements intersct.
- 3. Select ball nut to the right or above the intersect point.

NOTE IF USING A BALL SCREW WITHOUT LUBRICANT DE-RATE LIFE BY 90%.

Life Expectancy (Meters of Travel)

COLUMN STRENGTH: METRIC MRT AND PMT SCREWS

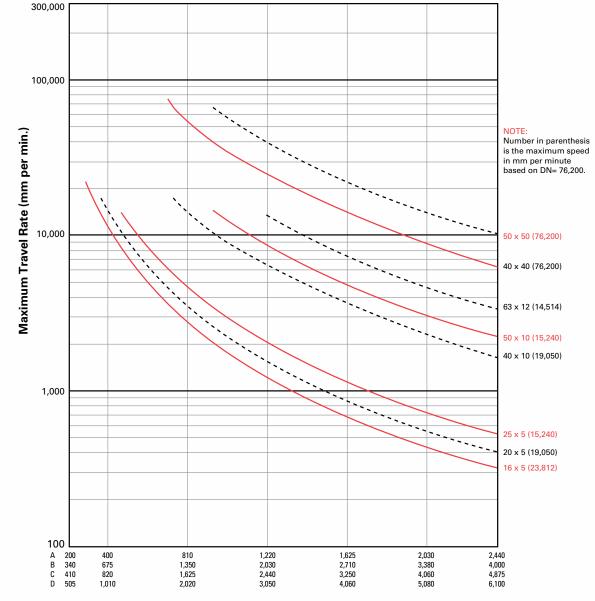


Use this chart to verify the screw selected has sufficient column strength for your load.

TO USE THIS CHART: Find a point at which the maximum length between bearing and load intersects the maximum load. Be sure the screw selected is above and to the right of that point.

Metric to Inch Conversion:

1 Newton = .224 lbf 1 mm = 0.039 in1 N•m = 8.85 in⋅lb



Maximum Length Between Bearings (mm) (see page 66-67 for reference description on A-B-C-D end fixity)

CRITICAL SPEED: METRIC MRT AND PMT SCREWS

TO USE THIS CHART

- 1. Determine maximum travel rate required.
- 2. Determine screw length "L"
- 3. Find point at which travel rate and screw length intersect. Select a screw above and to the right of that point.

Maximum Length Between Bearings (mm)

(see page 66-67 for reference description on A-B-C-D end fixity)

POWER•TRAC™

METRIC BALL SCREW ENGINEERING

MRT AND PMT SCREW AND NUT ASSEMBLIES

REFERENCE NUMBER SYSTEM

MRT-25×5 - RA / EK / 4N / 1063 / MBN-10436 / S

EK EK = Universal Double

Bearing Support,

Shaft Extension

N = No Shaft Extension

K = Shaft Extension with Keyway

L = Shaft Extension without Keyway

with Keyway

BALL SCREW

Thread Form Codes

MRT/PMT Dia. x Lead (mm)

MRT 16x5 = 16 x 5 **MRT 20×5** = 20×5

MRT 25×5 = 25×5 MRT $40 \times 10 = 40 \times 10$

MRT 40×40 = 40×40 MRT 50×10 = 50 × 10

MRT 50×50 = 50×50 MRT 63×12 = 63 × 12

PMT 16×5 = 16×5 **PMT 20×5** = 20 × 5

PMT 25×5 = 25×5 **PMT 40 \times 10 = 40 \times 10 PMT 50×10** = 50×10

MATERIAL

PMT 63×12 = 63 × 12

R

R = Right Hand Thread

Note: Not all materials are available for all sizes

FIRST END CONFIGURATION

Note: Both Ends must be specified.

Single Bearing Supports are used in conjunction with Type 1N end machining.

Double Bearing Supports are used in conjunction with Type 3K, 3L, or 3N end machining.

Flanged Fixed Bearing Mounts are used in conjunction with Type 5 end machining.

1 = Type 1 4 = Type 4 2 = Type 2 5 = Type 5 3 = Type 3

B = Universal Double Bearing Support End Cap Facing Screw Thread

C = Universal Single Bearing Support

D = Flanged Single Bearing Support Flange Facing Screw Thread

E = Universal Double Bearing Support End Cap Facing Away From Screw Thread

F = Flanged Double Bearing Support Flange Facing Screw Thread

G = Flanged Single Bearing Support Flange Facing Away From Screw Thread

H = Flanged Double Bearing Support Flange Facing Away From Screw Thread

R = Flanged Fixed Bearing Support Flange Facing Screw Thread

MODIFIER LIST S or M Required

F Optional

S = Standard, not additional description required

F = Round Flange

M = Modified, additional description required

TRAVEL NUT

MRN or MPN Nut

Use standard part number found in the Technical Data Section for Metric Ball Screws

Example

MBN 10206 = 16×5 MRT Nut

Nut will be installed with flange or threaded end toward first end designation. 00000 = No Nut

OVERALL LENGTH (OAL)

Length in mm.

SECOND END CONFIGURATION

Refer to the First End Configuration section below. Note: Both Ends must be specified.

Dia Lead	Rating (N)	Rating (N)	(mm)	(N•m)	Ν
16 × 5	7.6	12.4	12.90	0.880	M
20 × 5	13	24.4	17.50	0.880	Ν
25 × 5	18.5	39.4	22.60	0.880	M
40 × 10	62.5	136.2	34.79	1.778	M
40 × 40	75.3	121.4	33.79	7.080	M

MRT ROLLED BALL SCREWS

MRT Rolled Ball Screw assemblies feature 100µm / 300mm lead accuracy ball screws with precision ball nuts that are an economical, high-performance alternative to ground thread ball screw assemblies. MRT Rolled Ball Screws are manufactured under tightly controlled conditions in the rolling process. Uniform heat treatment is monitored by temperature sensors to ensure high quality and accurate lead. The ball nut assemblies ensure accuracy, zero backlash, consistent repeatability, and high system stiffness at low running torque.

Ball nuts can be assembled with a selective fit to minimize lash.

Nook Industries provides quality end machining of the rolled ball screw to standard configurations or to your specifications. Precision rolled ball screw assemblies may be fitted to Nook EZZE MOUNTS for simple system integration.

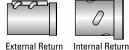
MRT SCREWS & NUTS METRIC QUICK REFERENCE:

Nominal Dia Lead	Dynamic Load Rating (N)	Static Load Rating (N)	Root Diameter (mm)	Torque to Raise 1kN (N∙m)	Nut
16 × 5	7.6	12.4	12.90	0.880	MBN
20 × 5	13	24.4	17.50	0.880	MBN
25 × 5	18.5	39.4	22.60	0.880	MBN
40 × 10	62.5	136.2	34.79	1.778	MBN
40 × 40	75.3	121.4	33.79	7.080	MPN
50 × 10	75.5	189.3	45.20	1.778	MBN
50 × 50	92.6	152.4	43.02	7.080	MPN
63 × 12	140	386	56.98	2.124	MBN

MRT BALL NUTS

can be installed on the MBN nuts.

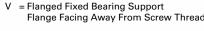
MBN Metric Ball Nut (no preload) - offers durable, low cost linear motion. Mounting flanges and wiper kits

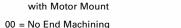


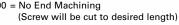
External Return Internal Return

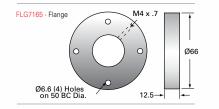
MPN Metric Preload Ball Nut - has a light preload which is produced by

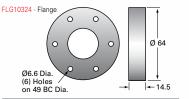
shifting the internal threads slightly in the center of the nut. The threads are ground to give extra precision and to ensure uniform preload. MPN ball nuts offer a compact profile and extra stiffness over standard clearance ball nuts. Special care is taken when custom fitting MPN ball nuts on their matching ballscrews. This extra care in manufacturing and assembly provides a backlash-free system with uniform torque, high stiffness and long life.




U = Universal Double Bearing Support with Motor Mount



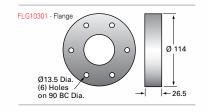




XX= Custom Machining (Print or specified data must be provided)

				BALL NUT								SCI	REW			BALL NUT A	ACCESSORIES	
	Ball Nut Number	Helix	Dynamic Lo (kN)	ad Static Load (kN)	Spring Rate × 10 ⁶ (kN/µm)	Nominal Ball Dia. (mm)	Nut Wt.	Torque to Raise 1 kN (N•m)	Return Style	Ball Circ Dia. (m	cle Le m) (m	ad Roo ım) (m	t Dia	Screw Wt. (g/m)	Part Number	Flange	Wiper	BALL NUT DIMENSIONS (mm)
16x5 MRT single start Lead Accuracy: ±100µm/300 mm	MBN10436	RH	7.6	12.4	_	3.175	123	0.88	external	16	5.	0 12	2.9	1222	16×5 MRT	FLG7165	_	927 - 19 R 19 23.5 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1
20×5 MRT single start Lead Accuracy: ±100µm/300 mm	MBN10295	RH	13	24.4	_	3.175	238	0.88	internal	20	5.	0 17	7.5	2170	20×5 MRT	FLG10324	_	Spanner Hole Was x 1.5 Spanner Hole Spanner Hole Spanner Hole Spanner Hole Spanner Hole Spanner Hole Hole
25×5 MRT single start Lead Accuracy: ±100μm/300 mm	MBN10281	RH	18.5	39.4	_	3.175	280	0.88	internal	25.75	5.	0 22	2.6	3452	25×5 MRT	FLG10289	integral (elastomer)	Spanner Hole + Hole Lube Hole 59 114

Custom cut lengths available up to 7M. For longer lengths, contact Customer Service.

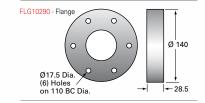


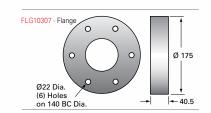
40×10 MRT 40×40 MRT

				BALL NUT								SCREW	1		BALL NUT A	CCESSORIES	
	Ball Nut Number	Helix	Dynamic Load (kN)	Static Load (kN)	Spring Rate × 10 ⁶ (kN/µm)	Nominal Ball Dia. (mm)	Nut Wt.	Torque to Raise 1 kN (N•m)	Return Style	Ball Circle Dia. (mm)		Root Di (mm)	Screw Wt. (g/m)	Part Number	Flange	Wiper	BALL NUT DIMENSIONS (mm)
40×10 MRT single start														40×10			Ø8 Spanner - M60x2
Lead Accuracy: ±100µm/300 mm	MBN10291	RH	62.5	136.2	_	7.144	1177	1.778	internal	42.1	10.0	34.79	8566	MRT	FLG10301	_	+26 +113.5
0×40 MRT louble start	MDM40400													40×40		integral	45° \$ M8x1 Ø62.8
.ead Accuracy: ⊧100µm/300 mm	MPN10429	RH	75.3	121.4	_	6.35	1560	7.08	internal	40.28	40.0	33.79	8315	MRT	integral	integral (plastic)	Ø93 Ø78 B.C. 102

Custom cut lengths available up to 7M. For longer lengths, contact Customer Service.

Nook ball screws used in a textile manufacturing application





				BALL NUT						SCREV	N		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Dynamic Load (kN)	d Static Load (kN)	Spring Rate × 10 ⁶ (kN/µm)	Nominal Ball Dia. (mm)	Nut Wt. (g)	Torque to Raise 1 kN (N•m)	Return Style	Ball Circle Lead Root Di Dia. (mm) (mm) (mm)	Scr ia W (g/	/t. Part	Flange	Wiper	BALL NUT DIMENSIONS (mm)
50×10 MRT single start Lead Accuracy: ±100µm/300 mm	MBN10285	RH	75.5	189.3	_	6.35	1,952	1.778	internal	51.7 10.0 45.2	13,	880 50×10 MRT	FLG10290	integral (elastomer)	Spanner Hole - Ø75g6 M8×1 Lube Hole - M72x2
50×50 MRT double start Lead Accuracy: ±100µm/300 mm	MPN10432	RH	92.6	152.4	_	6.35	2,960	7.080	internal	49.5 40.0 43.02	139	900 50×50 MRT	integral	integral (plastic)	M8x1 Lube Hole Ø62.8 — Ø75g6 — 0110 Ø93 B.C.
63×12 MRT single start Lead Accuracy: ±100μm/300 mm	MBN10297	RH	140	386	_	7.94	4451	2.124	internal	65.1 12.0 56.98	220	046 63×12 MRT	FLG10307	integral (plastic)	Ø95 R 58 M8x1.25 Lube Hole M90x2

Custom cut lengths available up to 7M. For longer lengths, contact Customer Service.

PMT PRECISION ROLLED METRIC BALL SCREWS

PMT Precision Rolled Ball Screw assemblies feature 25µm/300mm lead accuracy ball screws with precision ground preloaded ball nuts that are an economical, high-performance alternative to ground thread ball screw assemblies. PMT Precision Rolled Ball Screw are manufactured under tightly controlled conditions in the rolling process. Uniform heat treatment is monitored by temperature sensors to ensure high quality and accurate lead. The preloaded ball nut assemblies ensure accuracy, zero backlash, consistent repeatability, and high system stiffness at low running torque.

Ball nuts feature a unique solid preload that enhances system smoothness, and are factory-fit on the ball screws, providing a backlash-free sytem for long life.

Nook Industries provides quality end machining of the rolled ball screw to standard configurations or to your specifications. Precision rolled ball screw assemblies may be fit to Nook EZZE MOUNTS for simple system integration.

40 x 10 precision ball screw

PMT BALL NUTS

MPN Metric Preload Ball Nut - has a light preload which is produced

by shifting the internal threads slightly in the center of the nut. The threads are precision-ground to ensure uniform External Return Internal Return preload. MPN ball nuts offer a compact profile and extra stiffness over standard clearance ball nuts. Special care is taken when custom fitting MPN ball nuts on their matching ballscrews. This extra care in manufacturing and assembly provides a backlash-free system with uniform torque, high stiffness and long life.

PMT SCREWS & NUTS METRIC QUICK REFERENCE:

Nominal Dia Lead	Dynamic Load Rating (N)	Static Load Rating (N)	Root Diameter (mm)	Torque to Raise 1 kN	Nut
16 × 5	5.7	8.6	12.90	0.880	MPN
20 × 5	7.2	12.2	17.50	0.880	MPN
25 × 5	8.4	15.7	22.60	0.880	MPN
40 × 10	28.4	54.4	34.79	1.778	MPN
50 × 10	41.6	94.6	45.20	1.778	MPN
63 × 12	76.91	193	56.98	2.124	MPN

Nook ball screws are used in numerous maritime applications

16×5 PMT 20×5 PMT 25×5 PMT

				BALL NUT						SCRE	W		BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Dynamic Load (kN)	Static Load (kN)	Spring Rate × 10 ⁶ (kN/µm)	Nominal Ball Dia. (mm)		Torque to Raise 1 kN (N•m)	Return Style	Ball Circle Lead Root D Dia. (mm) (mm) (mm)	Dia '	crew Wt. Part g/m) Number	Flange	Wiper	BALL NUT DIMENSIONS (mm)
16×5 PMT single start .ead Accuracy: £25μm/300 mm	MPN11102	RH	5.7	8.6	0.22	3.175	190	0.88	internal	16 5.0 12.9	1	16 ×5 PMT	integral	integral (elastomer)	Ø5.50 Lube Hole 22.5° Ø28g6 Ø28g6 Ø38.0 B.C. 2 × 20.00
20x5 PMT single start ead Accuracy: .25µm/300 mm	MPN10332	RH	7.2	12.2	0.28	3.175	307	0.88	internal	20 5.0 17.5	2	2170 20×5 PMT	integral	integral (elastomer)	M6x1 Lube Hole 45 Ø58 Ø47 B.C. Ø6.60
25×5 PMT single start Lead Accuracy: ±25µm/300 mm	MPN10333	RH	8.4	15.7	0.35	3.175	340	0.88	internal	25.75 5.0 22.6	3	3452 25×5 PMT	integral	integral (elastomer)	Ø6.6 M6x1 Lube Hole Ø40g6

Custom cut lengths available up to 7M. For longer lengths, contact Customer Service.

Nook ball screws are used in many conveyor operations

				BALL NUT						SCREW			BALL NUT	ACCESSORIES	
	Ball Nut Number	Helix	Dynamic Load (kN)	d Static Load (kN)	Spring Rate × 10 ⁶ (kN/µm)	Nominal Ball Dia. (mm)		Torque to Raise 1 kN (N•m)	Return Style	Ball Circle Lead Root Dia Dia. (mm) (mm) (mm)	Screw Wt. (g/m)	Part Number	Flange	Wiper	BALL NUT DIMENSIONS (mm)
40×10 PMT single start Lead Accuracy: ±25μm/300 mm	MPN10305	RH	28.4	54.5	0.55	7.144	1182	1.778	internal	42.1 10.0 34.79	8566	40×10 PMT	integral	intregral (elastomer)	Ø5 & M8x1 Lube Hole Lube Hole 87 414 -
50×10 PMT single start Lead Accuracy: ±25μm/300 mm	MPN10334	RH	41.6	94.6	0.97	6.35	1,778	1.778	internal	51.7 10.0 45.2	13880	50×10 PMT	integral	integral (elastomer)	M8x1 Lube Hole Ø75g6 — Ø7110 Ø75g6 — Ø
63×12 PMT single start Lead Accuracy: ±25μm/300 mm	MPN10335	RH	76.91	193	0.97	7.94	4915	2.124	internal	65.1 12.0 56.98	22046	63×12 PMT	integral	integral (plastic)	M8x1 Lube Hole 45° 15° 0115 B.C. 013.5

Custom cut lengths available up to 7M. For longer lengths, contact Customer Service.

NOOK

NOOK NRS*

PLANETARY ROLLER SCREW ASSEMBLIES

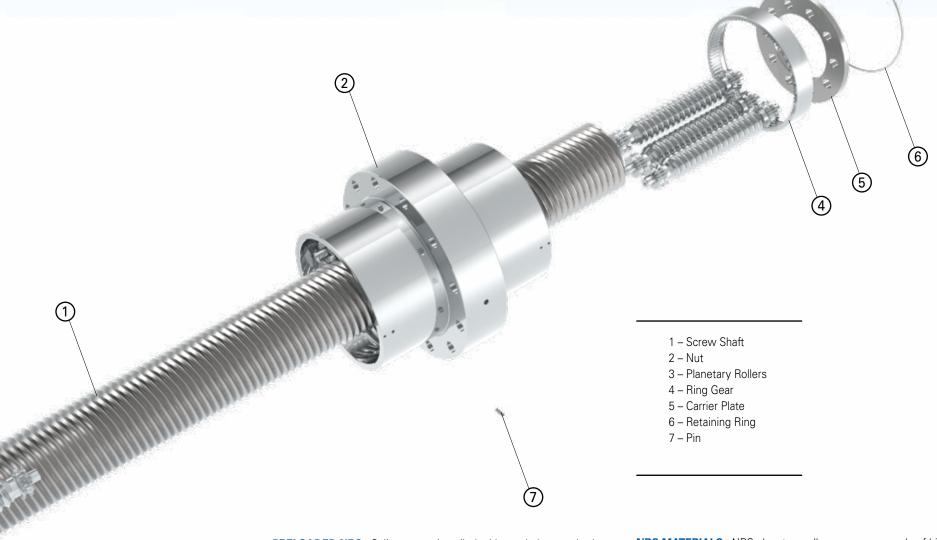
PLANETARY ROLLER SCREW
ENGINEERING164-171
Planetary Roller Screw Design 1164-165
Calculation and Selection166-169
Lubrication and Maintenance169
Accuracy and Installation170
Reference Number System171
PLANETARY ROLLER SCREWS AND
NUTS 172-179
Cylindrical Nut172-175
Flanged Nut176-179
HIGH CAPACITY BEARING MOUNT EZRF
TECHNICAL DATA180-183
EZRF Bearing Supports180
Type 5 End Machining181
CE7 Lookputo 102 102

ROLLER SCREWS

PLANETARY ROLLER SCREWS

NRS™ PLANETARY ROLLER SCREW

APPLICATION AND DESIGN


Nook Planetary Roller Screws (NRS), a member of the lead screw family, are remarkable devices designed to convert rotary motion into axial force or vice versa.

The NRS design offers multiple advantages and reliability for the most demanding applications when compared with other lead screw types due to its rolling motion. NRS offers high efficiency even in relatively shallow lead designs. The multitude of contact points can carry large loads and provide very high resolution (small axial movement) when using very shallow leads. NRS produces high rotational speeds with faster acceleration without adverse effects.

NRS planetary roller screws shown in the following pages cover a large spectrum of possibilities and application demands. Nook engineers are at your disposal to suggest the suitable product for your application requirements.

NRS PLANETARY ROLLER SCREWS ARE USED IN:

- Aerospace & Outer Space Applications
- Machine Tools
- Measuring Equipment
- Positioning Systems
- Optical Equipment
- Photography Equipment
- Ordnance
- High Force Actuators
- Plastic Machinery
- Transportation (Train Tilt Mechanisms)

PRELOADED NRS - Split nuts are installed with two halves pushed against each other and the clearance removed for preload. Due to the large number of contacts and great rigidity, a planetary roller screw does not require high preload amounts to perform backlash-free in most application conditions. Split nuts only carry load on a reduced length of thread (half-length minus the half-thickness of the calibrated spacer).

NON-PRELOADED NRS - One-piece solid nuts do not have a calibrated spacer to remove backlash. One-piece nuts have larger load ratings since all threads of the nut can carry load.

NRS MATERIALS - NRS planetary roller screws are made of high strength materials. The screw shaft is made of medium carbon induction hardenable alloy steel. The rollers and nut are manufactured from high grade bearing steel. All rolling surfaces are heat treated to a surface hardness not less than 56 HRC with a case depth suitably chosen to carry the load. Other materials, such as stainless steel, can be provided upon request.

Reduced load ratings should be considered when designing stainless steel roller screws.

44 x 12 precision roller screw

ROLLER SCREW CALCULATION AND SELECTION

HIGH STATIC AND DYNAMIC CAPACITY - Transmission of the load from the nut to the roller screw shaft is provided through the planetary rollers' engagement. The number of contact points is larger, therefore the load-carrying capacity of roller screws is much higher than that of ball screws.

WIDE VARIETY OF LEADS - Roller screws are also available with a wide variety of Lead × Pitch combinations, with leads as small as 2mm.

OTHER ADVANTAGES - Roller screws can be used with high acceleration and deceleration rates as well as with a high rotational speed. Additionally, there is no problem with losing bearing balls - the nut can be easily removed from the screw shaft frequently.

CALCULATION AND SELECTION

X

Basic dynamic load ratings C and L₁₀ life

Dynamic load rating is used to calculate the fatigue life of a NRS planetary roller screw. The dynamic load rating is defined as a load, constant in magnitude and direction under which 90% of a statistically significant number of apparently identical planetary roller screws reach an operating life of 10⁶ revolutions (L₁₀).

Static load ratings (C_o) and safety factors (S_o)

Static load rating C_o is a load that would cause a permanent deformation at the most heavily loaded contact equal to 0.0001 of the curvature diameter of the rolling element. In order to prevent deformations that could impair the proper function and the operating noise of the planetary roller screw, a safety factor S_o should be used when selecting a roller screw on the basis of its static load rating.

The S_o factor should not be less than 3. For operations with quasi-static load applications (i.e. presses) where the load occurs primarily on the same portion of the stroke, it is recommended to use higher S_o . If size constraints prevent the use of larger screws and the operation of the device is such that the S_o approaches 1, please contact our engineering department.

Theoretical life

Theoretical life L_{10} or L_h is the operating time reached by 90% of a group of apparently identical planetary roller screws operating under the same conditions. The theoretical life is calculated as follows:

$$L_{10} = \left(\frac{C}{P}\right)^3$$

If operation reliability higher than 90% is required, then the theoretical life must be corrected by using a reliability factor (a_n) according to the table.

 $L_n = L_{10} \times a_n$

Reliability (%)	-a ₀
90	1
95	0.62
96	0.53
97	0.44
98	0.33
99	0.21

Equivalent load

Operating loads can be defined by physical characteristics (i.e. masses, inertia, etc.) that operate on the screw. For systems with varying conditions, such as changes of load magnitude and duration as well as speed, the simple calculation cannot be employed and an equivalent load should be assessed.

The equivalent load is a calculated mean operating load used for determining life and is dependent upon load pattern.

The equivalent load can be computed using the following formula:

$$P = \sqrt[3]{\frac{q_1 \times n_1 \times F_{ax1}^3 + q_2 \times n_2 \times F_{ax2}^3 + ... + q_n \times n_n \times F_{axn}^3}{q_1 \times n_1 + q_2 \times n_2 + ... + q_n \times n_n}}$$

The equivalent speed can be computed as follows:

$$\mathbf{n}_{\text{eq}} = \frac{(\mathbf{q}_{1} \times \mathbf{n}_{1} + \mathbf{q}_{2} \times \mathbf{n}_{2} + \ldots + \mathbf{q}_{n} \times \mathbf{n}_{n})}{100}$$

Where:

x(1.2.n) = applied load in the individual time step

 $a_{(1,2,n)}$ = screw rotational speed (RPM) in the individual load steps

 $q_{(1,2,n)}$ = time step in (%)

Preload

Preloaded nuts are used to eliminate axial lash and to increase system rigidity. Preload is detrimental to the operating life and should be selected carefully. The preload magnitude should be accounted for in the equivalent load calculation so its impact on the system life can be determined.

Preload magnitude should be selected as a function of the operating conditions. In case the varying steps cannot be easily identified, the preload magnitude can be assessed as follows:

$$F_{p} = \frac{F_{max}}{2.83}$$

The resulting load (inclusive of preload and operating load) can be calculated as follows:

Loaded nut (or half-nut)

$$P = F_p - 0.65 \times F_{ax} (for F_{ax} < 2.83 \times F_p) (N)$$

$$P = 0 (for F_{ax} \ge 2.83 \times F_p) (N)$$

Relieved nut (or half-nut)

$$P = F_p - 0.35 \times F_{ax} \text{ (for } F_{ax} < 2.83 \times F_p)$$

$$P = 0 \text{ (for } F_{ax} \ge 2.83 \times F_p)$$

Where:

P = resulting equivalent load (N)

= preload magnitude (N)

 F_{av} = applied load (N)

Rigidity of a roller screw

The rigidity of a roller screw assembly is a function of several parameters, such as: nut rigidity, bearing support rigidity, screw shaft rigidity, mounting housing rigidity as well as the mounting arrangement. If known, all of the parameters can be assembled in a formula as follows:

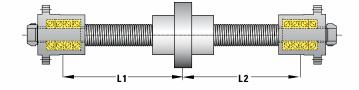
$$\mathbf{C}_{\delta t} = \left(\frac{1}{\mathbf{C}_{\delta s}} + \frac{1}{\mathbf{C}_{\delta n}} + \frac{1}{\mathbf{C}_{\delta h}} + \frac{1}{\mathbf{C}_{\delta h}}\right)^{4}$$

Where:

 $C_{\delta t}$ = total system rigidity (N/µm) $C_{\delta s}$ = screw shaft rigidity (N/µm)

Sn = screw nut rigidity (N/μm)

 $C_{\delta b}$ = support bearing rigidity (N/µm) $C_{\delta b}$ = housing rigidity (N/µm)


The screw rigidity can be calculated as follows:

$$C_{\delta s} = 165 \times d_0^2 \times f_{\delta}$$

Where

f_e = factor dependent on end-support configuration (see Fig. 1)

Fixed-fixed: $f_e = (1/L1 + 1/L2)$

Fixed-free: f_o = 1/L

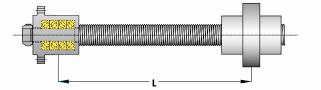


Fig. 1

ROLLER SCREW CALCULATIONS AND SELECTION continued

PLANETARY ROLLER SCREWS

The nut rigidity can be calculated as follows:

$$C_{\delta n} = f_n \times \sqrt[3]{F_{ax}}$$

The factor f_n can be supplied upon request. The customer must determine the rigidity of the bearings and housing.

COLUMN STRENGTH

If the screw is subjected to compressive loads, then a verification of its suitability to the loading conditions can be performed as follows:

$$F_{\text{ax allowed}} = \frac{f_{\text{sc}} \times d_0^4 \times 10^4}{L^2}$$

Where:

 F_{av} = compressed load (N)

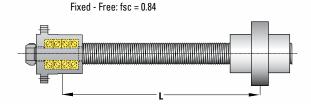
f_{sc} = factor dependent on end-support configuration (SEE FIG. 2)

d_o = screw nominal diameter (mm)

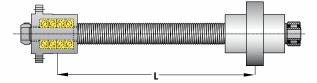
L = free-length (mm)

CRITICAL SPEED

The maximum achievable rotational velocity of planetary roller screws is affected by the following parameters:


- Rotational speed capability of the nut (and planetary train)
- Diameter and free length of the screw (for rotating screw shafts)
- End support configuration (for rotating screws)
- Rotation member (nut or screw)

While the rotational capability of the nut can be easily assessed since it depends upon the maximum rotational factor DMn (mean diameter of the planetary train × rotational velocity n), the critical speed of the screw shaft must be calculated for each application. This value is normally considered the threshold at which the screw will start to resonate (1st order). The nut DMn factor equals 140,000.


The critical speed is calculated as follows:

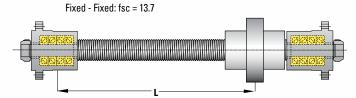
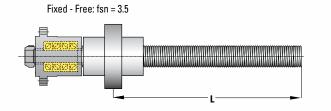
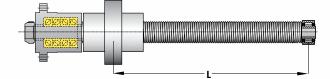

$$n_{\text{max}} = \frac{f_{\text{sn}} \times d_0 \times 10^{-7}}{1^2} \text{ (RPM)}$$

Fig. 2 - Column Strength fsc Factor



Fixed - Supported: fsc = 7



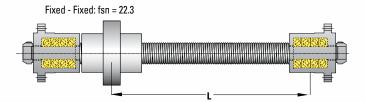


Fig. 3 - Critical Speed fsc Factor

Fixed - Supported: fsn = 15.3

Where:

 n_{max} = allowable screw rotational velocity (RPM) f_{sn} = factor dependent upon the end-support configuration (see FIG. 3) d_{sn} = screw nominal diameter (mm)

d_o = screw nominal diameter (m L = screw free-length (mm)

EFFICIENCY AND DRIVING TORQUE

Efficiency of the NRS planetary roller screw is dependent upon its operating parameters. The friction of the system is dependent upon varying factors that cannot be easily summarized here. To simplify the selection of the screw size, the following formulae can be used.

$$\eta_1 = \frac{1}{1 + \left(\frac{f_f \times d_o}{p_{bo}}\right)}$$

(for transforming rotary motion into axial motion)

$$\eta_2 = 1 - \left(\frac{f_f \times d_o}{p_{ho}} \right)$$

(for transforming axial motion into rotary motion)

Where:

 f_f = friction factor (mean value = 0.038) P_{ha} = screw lead

Torque required

To move an axial load at constant speed, the screw will require a motor torque and its magnitude can be calculated as follows:

$$\mathbf{M}_{t} = \frac{\mathbf{F}_{ax} \times \mathbf{p}_{ho} \times 10^{-3}}{2 \times \pi \times \eta_{1}}$$

By contrast, to restrain an axial load, the screw must be equipped with a brake and the restraining torque is calculated as follows:

 $M_{\bullet} = \text{drive torque } (N \bullet m)$

$$\mathbf{M}_{b} = \frac{\mathbf{F}_{ax} \times \mathbf{p}_{bo} \times \eta_{2} \times 10}{2 \times \pi}$$

 $M_b = brake torque (N • m)$

Note: The start-up torque required will be greater than the calculated value $\rm M_{\rm t}$ above.

LUBRICATION & MAINTENANCE

NRS planetary roller screws, like all rolling element systems, must be lubricated in order to operate properly.

The screws can be lubricated with oil or grease. The application demands will dictate which media is more suited for the task.

Grease Iubrication

Typically NLGI Grade 2 greases are used for roller screws The grease used must not contain solid additives in any form. Greases suitable for lubricating screws must contain EP additives as well as anti-wear additives.

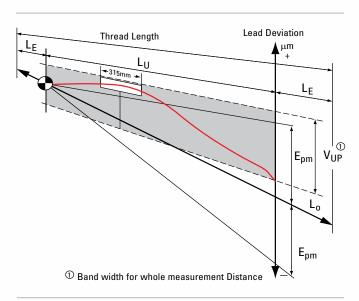
The lubricant characteristics, the amount to be used and its replenishment interval are a function of the application. Factors such as load, stroke length, operating temperature, environment cleanliness, and operating speed will impact the lubricant suitability and durability.

Nook engineers will gladly provide guidance on the selection of suitable grease as well as the maintenance interval.

Oil lubrication

Nook E-900L is available in a 32 oz. bottle for applications that require oil lubrication (see page 74). Applications that operate with high speeds and continuous motion may operate only with oil lubrication. The basic oil viscosity, the presence of additives and the lubricant flow should be assessed during the design phase.

Nook engineers will gladly provide guidance on the selection of a suitable oil, as well as the proper flow, to insure the system operates as intended.


ROLLER SCREW ACCURACY AND INSTALLATION

ACCURACY

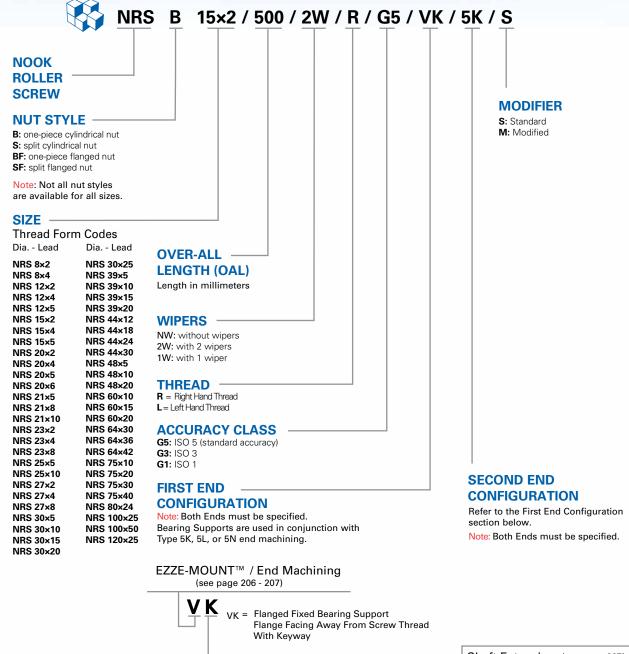
NRS planetary roller screws are produced in quality classes according to ISO 1, 3 and 5 standards. The summary of the characteristics and their allowable error are reported below

Accuracy Class	Tolerance* (µm)
G1	±6
G3	±12
G5	±23

^{*}Measured on a thread length of 315mm

EFFECTIVE THREAD	LENGTH L _u			ACCURA	CY CLASS		
from	to	G	i1	(33	G	i5
(mm)	(mm)	Epm (µm)	Vup (µm)	Epm (µm)	Vup (µm)	Epm (µm)	Vup (µm)
0	315	6	6	12	12	23	23
315	400	7	6	13	12	25	25
400	500	8	7	15	13	27	26
500	630	9	7	16	14	30	29
630	800	10	8	18	16	35	31
800	1000	11	9	21	17	40	35
1000	1250	13	10	24	19	46	39
1250	1600	15	11	29	22	54	44
1600	1800	-	-	35	25	65	51

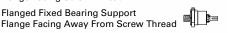
INSTALLATION

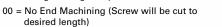

NRS planetary roller screws are precision components. They must be handled with care before and during installation to prevent the units from carrying radial loads or moments since either of these will impair the proper functioning and reduce the life of the system, or even cause the system to fail.

Nook engineers are at your disposal to address any concerns for the design of the adjacent construction and the bearing arrangement to maximize the usefulness of the NRS planetary roller screws.

ROLLER SCREW

REFERENCE NUMBER SYSTEM




5 = Type 5

 R = Flanged Fixed Bearing Support Flange Facing Screw Thread
 V = Flanged Fixed Bearing Support

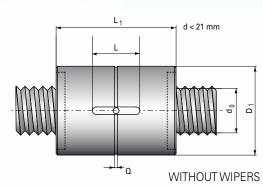
XX= Custom Machining (Print or specified data must be provided)

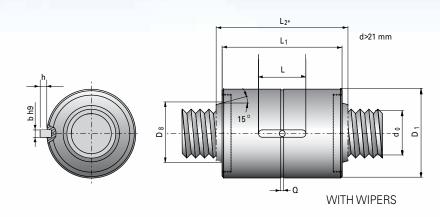
Shaft Extension (see page 207)

K = Shaft Extension with Keyway

L = Shaft Extension without Keyway

N = No Shaft Extension


100 × 50 roller screw with cylindrical nut

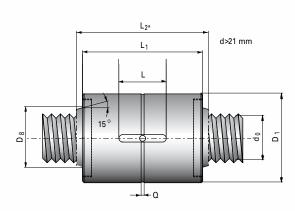

NRS 8mm > 27mm Ø

one-piece and split

cylindrical nut

Nook NRS Planetary Roller Screws are used in the most demanding and precise linear motion applications. With a greater number of contact points, a roller screw provides stiffness and higher load ratings compared to a ball

Nominal		Lead	D ₁ (g6)	Q	D ₈	L ₁	L ₂	Keyway L × b × h	Dynamic	Rating Static	backlash	Load Dynamic	T NUT Rating Static		End Code	
Screw Dia. d ₀	Dia. × Lead	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	C _a (kN)	C _{0a} (kN)	(mm)	C _a (kN)	C _{0a} (kN)	Locknut	Type 5	EZZE-Mount
8	NRS 8×2	2	21	3	-	31	-	10×3×1.2	6.98	17.91	0.02	4.19	8.90	-	_	_
	NRS 8×4	4	21	3	-	31	-	10×3×1.2	5.43	18.63	0.02	3.26	9.31	-	<u>-</u> ,	
12	NRS 12×2	2	26	3	-	31	-	14×4×1.5	10.24	26.72	0.02	6.14	13.36	-	-	_
	NRS 12×4	4	26	3	-	31	-	14×4×1.5	8.92	27.74	0.02	5.35	13.87	-	_	_
	NRS 12×5	5	26	3	-	31	-	14×4×1.5	8.31	31.00	0.02	4.88	15.50	-	-	-
15	NRS 15×2	2	34	3	-	35	-	14×4×1.5	13.47	31.74	0.02	8.08	15.87	SFZ 12×1	12	EZRF-3012
	NRS 15×4	4	34	3	-	35	-	14×4×1.5	11.94	33.00	0.02	7.16	16.50	SFZ 12×1	12	EZRF-3012
	NRS 15×5	5	34	3	-	35	-	14×4×1.5	11.20	36.90	0.02	6.72	18.45	SFZ 12×1	12	EZRF-3012
20	NRS 20×2	2	42	5	-	65	-	20×4×1.5	33.00	66.00	0.02	19.80	33.00	SFZ 15×1	15	EZRF-3015
	NRS 20×4	4	42	5	-	65	-	20×4×1.5	29.54	68.63	0.02	17.72	34.31	SFZ 15×1	15	EZRF-3015
	NRS 20×5	5	42	5	-	65	-	20×4×1.5	27.80	56.29	0.02	16.68	28.15	SFZ 15×1	15	EZRF-3015
	NRS 20×6	6	42	5	-	65	-	20×4×1.5	26.42	65.17	0.02	15.91	39.13	SFZ 15×1	15	EZRF-3015
21	NRS 21×5	5	45	5	26	64	72	20×5×2	40.70	68.70	0.02	24.40	34.20	SFZ 17×1	17	EZRF-3017
	NRS 21×8	8	45	5	26	64	72	20×5×2	44.20	69.00	0.02	26.50	34.50	SFZ 17×1	17	EZRF-3017
	NRS 21×10	10	45	5	26	64	72	20×5×2	47.90	69.50	0.02	28.70	35.00	SFZ 17×1	17	EZRF-3017
23	NRS 23×2	2	45	4	30	55	65	20×5×2	40.89	66.80	0.02	24.63	33.40	SFZ 17×1	17	EZRF-3017
	NRS 23×4	4	45	5	30	55	65	20×5×2	40.12	64.38	0.02	24.17	32.19	SFZ 17×1	17	EZRF-3017
	NRS 23×8	8	45	5	30	55	65	20×5×2	38.41	69.02	0.04	23.14	34.51	SFZ 17×1	17	EZRF-3017
25	NRS 25×5	5	53	5	32	78	90	25×6×2.5	52.70	92.00	0.02	31.60	46.00	SFZ 20×1	20	EZRF-3020
	NRS 25×10	10	53	5	32	78	90	25×6×2.5	60.50	88.51	0.04	36.30	44.20	SFZ 20×1	20	EZRF-3020
27	NRS 27×2	2	53	4	35	55	69	20×5×2	44.32	77.66	0.02	26.70	38.83	SFZ 25×1.5	20	EZRF-3025
	NRS 27×4	4	53	5	35	55	69	20×5×2	40.34	80.76	0.02	24.30	40.38	SFZ 25×1.5	20	EZRF-3025
	NRS 27×8	8	53	5	35	55	69	20×5×2	42.10	99.26	0.04	25.36	49.63	SFZ 25×1.5	20	EZRF-3025



ROLLER SCREWS

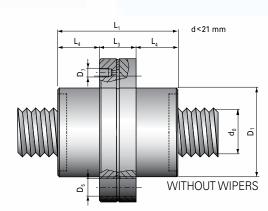
SPLIT NUT

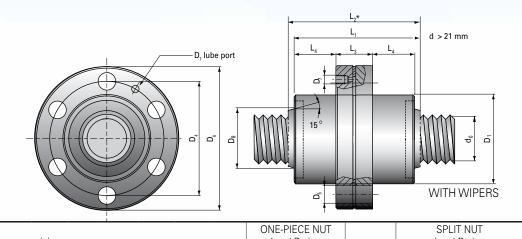
NRS 30mm > 120mm Ø one-piece and split

cylindrical nut

WITH WIPERS

								Keyway	Load			Load I				
N			D / 0\	0	D				Dynamic	Static	backlash	Dynamic	Static		F 10 1	
Nominal Screw Dia. d ₀	Dia. × Lead	Lead (mm)	D ₁ (g6) (mm)	Q (mm)	D ₈ (mm)	L ₁ (mm)	L ₂ (mm)	L × b × h (mm)	C _a (kN)	C _{0a} (kN)	(mm)	C _a (kN)	C _{0a} (kN)	Locknut	End Code Type 5	EZZE-Mount
30	NRS 30×2	2	64	5	45	85	99	32×6×2.5	58.70	133.00	0.02	35.20	66.50	-	25	EZRF-3025
	NRS 30×5	5	64	5	45	85	99	32×6×2.5	76.70	122.30	0.02	46.00	61.15	-	25	EZRF-3025
	NRS 30×10	10	64	5	45	85	99	32×6×2.5	88.60	122.30	0.04	53.20	61.15	-	25	EZRF-3025
	NRS 30×15	15	64	5	45	85	99	32×6×2.5	96.40	119.40	0.07	57.80	59.70	-	25	EZRF-3025
	NRS 30×20	20	64	5	45	85	99	32×6×2.5	99.80	128.80	0.07	59.80	64.40	-	25	EZRF-3025
	NRS 30×25	25	64	5	45	85	99	32×6×2.5	102.40	143.20	0.07	61.40	71.60	-	25	EZRF-3025
39	NRS 39×5	5	80	7	50	110	126	40×8×3	107.70	228.50	0.02	64.60	114.30	-	35	EZRF-3035
	NRS 39×10	10	80	7	50	110	126	40×8×3	127.30	230.30	0.04	76.30	115.10	-	35	EZRF-3035
	NRS 39×15	15	80	7	50	110	126	40×8×3	138.30	228.10	0.04	82.80	114.00	-	35	EZRF-3035
	NRS 39×20	20	80	7	50	110	126	40×8×3	144.70	214.60	0.04	86.70	107.30	-	35	EZRF-3035
44	NRS 44×12	12	80	7	56	90	106	32×6×2.5	115.90	217.20	0.04	69.50	108.60	-	40	EZRF-3040
	NRS 44×18	18	80	7	56	90	106	32×6×2.5	127.40	215.00	0.07	76.40	107.50	-	40	EZRF-3040
	NRS 44×24	24	80	7	56	90	106	32×6×2.5	136.50	221.40	0.07	81.90	110.70	-	40	EZRF-3040
	NRS 44×30	30	80	7	56	90	106	32×6×2.5	133.80	206.30	0.07	80.20	103.10	-	40	EZRF-3040
48	NRS 48×5	5	100	7	63	127	142	45×8×3	165.10	334.30	0.02	99.00	167.15	-	45	EZRF-3045
	NRS 48×10	10	100	7	63	127	142	45×8×3	193.00	403.80	0.04	115.80	201.90	-	45	EZRF-3045
	NRS 48×20	20	100	7	63	127	142	45×8×3	215.10	369.00	0.07	129.00	184.50	-	45	EZRF-3045
60	NRS 60×10	10	130	10.5	77	162	180	45×10×3	282.30	662.60	0.04	169.40	331.30	SFZ 55×2	55	EZRF-3055
	NRS 60×15	15	130	10.5	77	162	180	45×10×3	307.00	656.30	0.07	184.20	328.20	SFZ 55×2	55	EZRF-3055
	NRS 60×20	20	130	10.5	77	162	180	45×10×3	325.00	558.90	0.07	195.00	279.45	SFZ 55×2	55	EZRF-3055
64	NRS 64×30	30	115	7	75	129	151	45×8×3	260.90	515.00	0.07	156.50	257.50	SFZ 60×2	60	EZRF-3060
	NRS 64×36	36	115	7	75	129	151	45×8×3	260.00	493.10	0.07	156.00	246.50	SFZ 60×2	60	EZRF-3060
	NRS 64×42	42	115	7	75	129	151	45×8×3	258.20	471.40	0.07	154.90	235.70	SFZ 60×2	60	EZRF-3060
75	NRS 75×10	10	150	10.5	98	191	211	63×10×3	411.10	969.40	0.04	246.00	484.70	SFZ 70×2	70	EZRF-3070
	NRS 75×20	20	150	10.5	98	191	211	63×10×3	483.40	816.20	0.07	290.00	408.10	SFZ 70×2	70	EZRF-3070
	NRS 75×30	30	150	10.5	98	206	224	63×10×3	461.40	866.90	0.07	276.80	433.45	SFZ 70×2	70	EZRF-3070
	NRS 75×40	40	160	10.5	98	200	218	63×10×3	595.80	906.10	0.07	-	-	SFZ 70×2	70	EZRF-3070
	NRS 80×24	24	150	10.5	98	200	224	63×10×3	650.90	1,078.00	0.07	-	-	SFZ 75×2	70	EZRF-3075
100	NRS 100×25	25	200	13	122.5	270	288	100×16×4	960.5	1412	0.07	-	-	-	-	-
	NRS 100×50	50	200	13	122.5	270	288	100×16×4	822.1	1292	0.07	-	-	-	-	-
120	NRS 120×25	25	240	15	176	280	304	100×16×4	1510	2376	0.07	-	-	-	-	-
								1								-


ROLLER SCREWS



NRS 8mm > 27mm Ø one-piece and split flanged nut

Nook NRS Planetary Roller Screws are used in the most demanding and precise linear motion applications. With a greater number of contact points, a roller screw provides stiffness and higher load ratings compared to a ball screw.

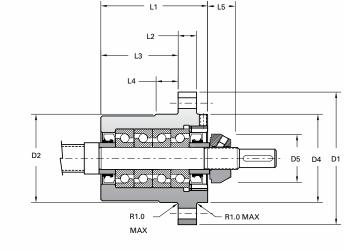
							lube port						Load F	- 1		Load	Rating			
Nominal		Lead	D ₁ (g6)	$D_{\scriptscriptstyle{A}}$	n×D _s	D_6	D ₇	D_8	L	L ₂	L_3	L ₄	Dynamic	Static	backlash	Dynamic	Static		End Code	
Screw Dia. d ₀	Dia. × Lead	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	C _a (kN)	C _{0a} (kN)	(mm)	C _a (kN)	C _{0a} (kN)	Locknut	Type 5	EZZE-Mount
8	NRS 8×2	2	21	31	6×4.5	41	M4	-	31	41	13	14	6.98	17.91	0.02	4.19	8.90	_	-	_
	NRS 8×4	4	21	31	6×4.5	41	M4	-	31	41	13	14	5.43	18.63	0.02	3.26	9.31	-	_	_
12	NRS 12×2	2	26	36	6×4.5	46	M4	-	31	41	13	14	10.24	26.72	0.02	6.14	13.36	_	-	_
	NRS 12×4	4	26	36	6×4.5	46	M4	-	31	41	13	14	8.92	27.74	0.02	5.35	13.87	-	-	_
	NRS 12×5	5	26	36	6×4.5	46	M4	-	31	41	13	14	8.31	31.00	0.02	4.88	15.50	_	-	_
15	NRS 15×2	2	34	45	6×5	56	M5	-	35	51	18	16.5	13.47	31.74	0.02	8.80	15.87	SFZ 12×1	12	EZRF-3012
	NRS 15×4	4	34	45	6×5	56	M5	-	35	51	18	16.5	11.94	33.00	0.02	7.16	16.50	SFZ 12×1	12	EZRF-3012
	NRS 15×5	5	34	45	6×5	56	M5	-	35	51	18	16.5	11.20	36.90	0.02	6.72	18.45	SFZ 12×1	12	EZRF-3012
20	NRS 20×2	2	42	53	6×6	64	M6	-	55	65	20	22.5	33.00	66.00	0.02	19.80	33.00	SFZ 15×1	15	EZRF-3015
	NRS 20×4	4	42	53	6×6	64	M6	-	55	65	20	22.5	29.54	68.63	0.02	17.72	34.31	SFZ 15×1	15	EZRF-3015
	NRS 20×5	5	42	53	6×6	64	M6	-	55	65	20	22.5	27.80	56.29	0.02	16.68	28.15	SFZ 15×1	15	EZRF-3015
	NRS 20×6	6	42	53	6×6	64	M6	-	55	65	20	22.5	26.42	65.17	0.02	15.91	39.13	SFZ 15×1	15	EZRF-3015
21	NRS 21×5	5	45	56	6×6	68	M6	26	64	72	18	23	40.70	68.70	0.02	24.40	34.20	SFZ 17×1	17	EZRF-3017
	NRS 21×8	8	45	56	6×6	68	M6	26	64	72	18	23	44.20	69.00	0.02	26.50	34.50	SFZ 17×1	17	EZRF-3017
	NRS 21×10	10	45	56	6×6	68	M6	26	64	72	18	23	47.90	69.50	0.02	28.70	35.00	SFZ 17×1	17	EZRF-3017
23	NRS 23×2	2	45	56	6×7	67	M6	30	55	65	20	22.5	24.63	33.40	0.02	24.63	33.40	SFZ 17×1	17	EZRF-3017
	NRS 23×4	4	45	56	6×7	67	M6	30	55	65	20	22.5	24.17	32.19	0.02	24.17	32.19	SFZ 17×1	17	EZRF-3017
	NRS 23×8	8	45	56	6×7	67	M6	30	55	65	20	22.5	23.14	34.51	0.04	23.14	34.51	SFZ 17×1	17	EZRF-3017
25	NRS 25×5	5	53	70	6×7	84	M6	32	78	90	20	29	52.70	92.00	0.02	31.60	46.00	SFZ 20×1	20	EZRF-3020
	NRS 25×10	10	53	70	6×7	84	M6	32	78	90	20	29	60.50	88.51	0.04	36.30	44.20	SFZ 20×1	20	EZRF-3020
27	NRS 27×2	2	53	68	6×7	83	M6	35	55	69	22	23.5	44.32	77.66	0.02	26.70	38.83	SFZ 25×1.5	25	EZRF-3025
	NRS 27×4	4	53	68	6×7	83	M6	35	55	69	22	23.5	40.34	80.76	0.02	24.30	40.38	SFZ 25×1.5	25	EZRF-3025
	NRS 27×8	8	53	68	6×7	83	M6	35	55	69	22	23.5	42.10	99.26	0.04	25.36	49.63	SFZ 25×1.5	25	EZRF-3025

NRS 30mm > 100mm Ø one-piece and split flanged nut

D, lube port
ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο
d > 21 mm
D d ₀
WITH WIPERS

							lube						ONE-PIE	CE NUT		SPLIT	ΓNUT			
							port						Load F Dynamic	Rating Static		Load Dynamic	Rating Static			
Nominal	D: 1 1		D ₁ (g6)	D_4	$n \times D_5$	D_6	D_7	D ₈	L ₁	L ₂	L ₃	L ₄			backlash	'			End Code	F77F N4 .
Screw Dia. d ₀	Dia. × Lead	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	C _a (kN)	C _{0a} (kN)	mm	C _a (kN)	C _{0a} (kN)	Locknut	Type 5	EZZE-Mount
30	NRS 30×2	2	64	81	6×9	98	M6	45	85	99	27	29	58.70	133.00	0.02	35.20	66.50	SFZ 25×1.5	25	EZRF-3025
	NRS 30×5	5	64	81	6×9	98	M6	45	85	99	27	29	76.70	122.30	0.02	46.00	61.15	SFZ 25×1.5	25	EZRF-3025
	NRS 30×10	10	64	81	6×9	98	M6	45	85	99	27	29	88.60	122.30	0.04	53.20	61.15	SFZ 25×1.5	25	EZRF-3025
	NRS 30×15	15	64	81	6×9	98	M6	45	85	99	27	29	96.40	119.40	0.07	57.80	59.70	SFZ 25×1.5	25	EZRF-3025
	NRS 30×20	20	64	81	6×9	98	M6	45	85	99	27	29	99.80	128.80	0.07	59.80	64.40	SFZ 25×1.5	25	EZRF-3025
	NRS 30×25	25	64	81	6×9	98	M6	45	85	99	27	29	102.40	143.20	0.07	61.40	71.60	SFZ 25×1.5	25	EZRF-3025
39	NRS 39×5	5	80	102	6×11	124	M6	54	110	126	33	38.5	107.70	228.50	0.02	64.60	114.30	SFZ 35×1.5	35	EZRF-3035
	NRS 39×10	10	80	102	6×11	124	M6	54	110	126	33	38.5	127.30	230.30	0.04	76.30	115.10	SFZ 35×1.5	35	EZRF-3035
	NRS 39×15	15	80	102	6×11	124	M6	54	110	126	33	38.5	138.30	228.10	0.04	82.80	114.00	SFZ 35×1.5	35	EZRF-3035
	NRS 39×20	20	80	102	6×11	124	M6	54	110	126	33	38.5	144.70	214.60	0.04	86.70	107.30	SFZ 35×1.5	35	EZRF-3035
44	NRS 44×12	12	80	102	6×11	124	M8×1	56	90	106	33	28.5	115.90	217.20	0.04	69.50	108.60	SFZ 40×1.5	40	EZRF-3040
	NRS 44×18	18	80	102	6×11	124	M8×1	56	90	106	33	28.5	127.40	215.00	0.07	76.40	107.50	SFZ 40×1.5	40	EZRF-3040
	NRS 44×24	24	80	102	6×11	124	M8×1	56	90	106	33	33.5	136.50	221.40	0.07	81.90	110.70	SFZ 40×1.5	40	EZRF-3040
	NRS 44×30	30	80	102	6×11	124	M8×1	56	90	106	33	33.5	133.80	206.30	0.07	80.20	103.10	SFZ 40×1.5	40	EZRF-3040
48	NRS 48×5	5	100	127	6×13.5	150	M8×1	63	127	142	37	45	165.10	334.30	0.02	99.00	167.15	SFZ 45×1.5	40	EZRF-3045
	NRS 48×10	10	100	127	6×13.5	150	M8×1	63	127	142	37	45	193.00	403.80	0.04	115.80	201.90	SFZ 45×1.5	40	EZRF-3045
	NRS 48×20	20	100	127	6×13.5	150	M8×1	63	127	142	37	45	215.10	369.00	0.07	129.00	184.50	SFZ 45×1.5	40	EZRF-3045
60	NRS 60×10	10	130	160	8×16.75	190	M8×1	79	162	180	45	58.5	282.30	662.60	0.04	169.40	331.30	SFZ 55×2	55	EZRF-3055
	NRS 60×15	15	130	160	8×16.75	190	M8×1	79	162	180	45	58.5	307.00	656.30	0.07	184.20	328.20	SFZ 55×2	55	EZRF-3055
	NRS 60×20	20	130	160	8×16.75	190	M8×1	79	162	180	45	58.5	325.00	558.90	0.07	195.00	279.45	SFZ 55×2	55	EZRF-3055
64	NRS 64×30	30	115	150	8×16.75	180	M8×1	75	129	151	45	42	260.90	515.00	0.07	156.50	257.50	SFZ 60×2	60	EZRF-3060
	NRS 64×36	36	115	150	8×16.75	180	M8×1	75	129	151	45	42	260.00	493.10	0.07	156.00	246.50	SFZ 60×2	60	EZRF-3060
	NRS 64×42	42	115	150	8×16.75	180	M8×1	75	129	151	45	42	258.20	471.40	0.07	154.90	235.70	SFZ 60×2	60	EZRF-3060
75	NRS 75×10	10	150	180	8×16.75	210	M8×1	98	191	211	45	73	411.10	969.40	0.04	246.00	484.70	SFZ 70×2	70	EZRF-3070
	NRS 75×20	20	150	180	8×16.75	210	M8×1	98	191	211	45	73	483.40	816.20	0.07	290.00	408.10	SFZ 70×2	70	EZRF-3070
	NRS 75×30	30	150	180	8×16.75	210	M8×1	98	206	224	45	80.5	461.40	866.90	0.07	276.80	433.45	SFZ 70×2	70	EZRF-3070
	NRS 75×40	40	160	180	8×16.75	210	M8×1	98	200	218	45	77.5	820.00	980.00	0.07	-	-	SFZ 70×2	70	EZRF-3070
80	NRS 80×24	24	150	180	8×16.75	210	M8×1	98	200	224	45	77.5	840.00	1,260.00	0.07	-	-	SFZ 75×2	75	EZRF-3075
100	NRS 100×25	25	200	245	12×17.5	275	M8×1	122.5	270	288	65	102.5	960.5	1412	0.07	-	-	-	-	-
	NRS 100×50	50	200	245	12×17.5	275	M8×1	122.5	270	288	65	102.5	822.1	1292	0.07	-	-	-	-	•

EZRF BEARING SUPPORTS FOR


NRS 15×2 NRS 80×24

S1

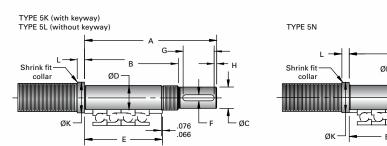
(8) Holes as shown on D3 ball circle

Roller screw high load ratings and extreme performance characteristics place large demands on end support units. Nook Industries has developed support units capable of handling these demands. Nook series EZRF end support units are

matched to the roller screw (see dimension table below) and are designed to provide high load carrying capacity, precision, speed, rigidity, low friction, and ease of maintenance and installation. EZRF supports include a SFZ locknut.

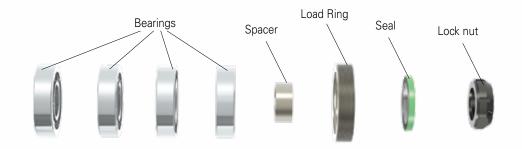
Part No.	Roller Screw	L1	L2	L3	L4	L5	D1	D2 g6	D3	D4	D5	E	S
EZRF-3012	NRS 15	67	10	51	14	15	72	48	60	48	30	25	5.8
EZRF-3015	NRS 20	72	10	55.5	15	17	82	54	68	54	33	28	6.8
EZRF-3017	NRS 21	78	12	59	16	19	92	64	78	64	37	33	6.8
	NRS 23	78	12	59	16	19	92	64	78	64	37	33	6.8
EZRF-3020	NRS 25	82	12	62	17	19	100	64	82	64	40	33	8.8
EZRF-3025	NRS 27	93	15	69.5	19	21	116	80	98	80	44	41	8.8
	NRS 30	93	15	69.5	19	21	116	80	98	80	44	41	8.8
EZRF-3035	NRS 39	115	20	83.5	23	23	140	100	120	100	54	51	10.8
EZRF-3040	NRS 44	125	20	90.5	25	23	160	112	136	112	65	57	12.8
EZRF-3045	NRS 48	135	20	99.5	27	23	174	125	150	125	70	63.5	12.8
EZRF-3055	NRS 60	152	25	111.5	31	26	214	150	182	150	85	76	16.8
EZRF-3060	NRS 64	169	25	127.5	33	27	226	162	194	162	90	82	16.8
EZRF-3070	NRS 75	186	30	137.5	37	29	268	188	228	188	100	95	20.8
EZRF-3075	NRS 80	196	30	146.5	39	29	290	211	251	211	105	109	20.8

all dimensions in millimeters


TYPE 5 END MACHINING USED WITH EZRF BEARING MOUNTS

Dimensional data for Type 5 ends is provided in the chart. Included in the chart are the locknut and lockwasher identification. These standard ends may be machined and ground to finish size.

NOOK NRS™

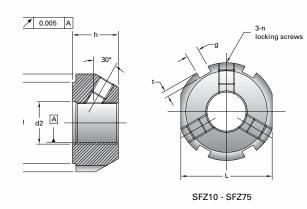

PLANETARY ROLLER SCREWS

Specifying standard machined ends results in quicker deliveries. The machined ends shown below represent designs that are compatible with common application requirements for fixed bearing support.

Machine End	C	OMMON DIMENS	IONS F	ORTYP	PE 5 (K	(,L,N) (mm)		TYPE 5 (K,	L) (mm)	
Codes	В	D	Е	K	L	Locknut	А	С	F	G	Н
12	85	12.008/11.997	69	18	8	SFZ 12 × 1	117	10.00/9.97	3	26	2
15	93	15.008/14.997	74	22	9	SFZ 15 × 1	133	12.00/11.97	4	33	3
17	101	17.008/16.997	80	24	9	SFZ 17 × 1	141	15.00/14.97	5	33	3
20	105	20.009/19.996	84	28	9	SFZ 20 × 1	151	17.00/16.97	5	37	4
25	119	25.009/24.996	95	32	10	SFZ 25 × 1.5	170	20.00/19.97	6	41	5
35	143	35.011/34.995	117	45	10	SFZ 35 × 1.5	205	30.00/29.97	8	51	4
40	153	40.011/39.995	127	50	12	SFZ 40 × 1.5	216	35.00/34.97	10	51	4
45	163	45.011/44.995	137	55	12	SFZ 45 × 1.5	228	40.00/39.97	12	51	5
55	184	55.012/54.993	154	65	14	SFZ 55 × 2	265	50.00/49.97	14	64	6
60	202	60.012/59.993	171	75	16	SFZ 60 × 2	291	55.00/54.97	16	71	6
70	222	70.012/69.993	188	85	18	SFZ 70 × 2	334	60.00/59.97	18	91	7
75	232	75.012/74.993	198	90	18	SFZ 75 × 2	346	65.00/64.97	18	91	8

all dimensions in millimeters

180



SFZ Locknut on an EZRF bearing mount

SFZ LOCKNUTS FOR

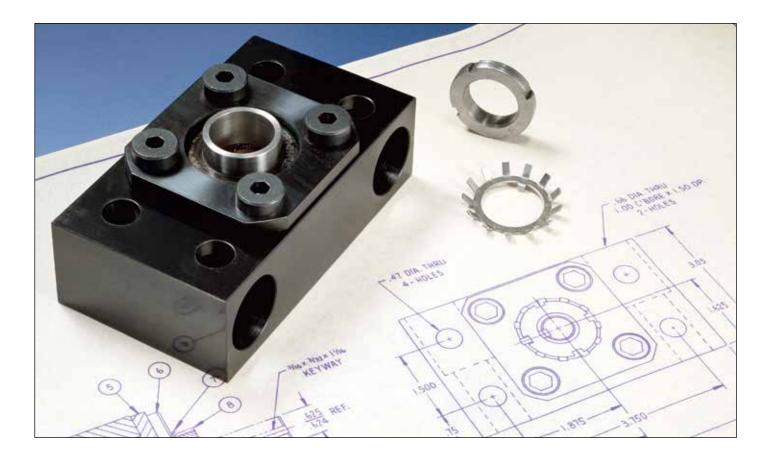
NRS 15×2 TO NRS 80×24

Conventional locknuts may not be suitable in a typical roller screw application due to the high axial load generated. Nook series SFZ locknuts are designed to carry high axial forces while minimizing the rotational inertia, an important benefit in high dynamic applications. SFZ locknuts are designed to carry high axial load, have high loosening torque and are manufactured with high accuracy to optimize the load on the thread interface.

				Dir	nensions in	mm			Locki	ng Screws		
Part No. Size × Pitch	Roller Screw	D	h	g	t	d1	d2	L	DIN	Max Tightening Torque (T) (N•m)	Allowable Axial Load (Ca) kN	Loosening Torque (T) (N•m)
SFZ 12×1	NRS 15	30	14	4	2	25	13	27	M5	4.7	40	18
SFZ 15×1	NRS 20	33	16	4	2	28	16	30	M5	4.7	60	20
SFZ 17×1	NRS 21	37	18	5	2	33	18	34	M6	8	80	25
SFZ 20×1	NRS 25	40	18	5	2	35	21	36	M6	8	90	35
SFZ 25×1.5	NRS 27	44	20	5	2	39	26	41	M6	8	130	45
SFZ 35×1.5	NRS 39	54	22	5	2	49	38	50	M6	8	190	65
SFZ 40×1.5	NRS 44	65	22	6	2.5	59	42	60	M8	18.6	210	80
SFZ 45×1.5	NRS 48	70	22	6	2.5	64	48	65	M8	18.6	240	95
SFZ 55×2	NRS 60	85	25	7	3	78	58	80	M8	18.6	340	225
SFZ 60×2	NRS 64	90	26	8	3.5	82	62	85	M8	18.6	380	245
SFZ 70×2	NRS 75	100	28	8	3.5	92	72	95	M8	18.6	490	285
SFZ 75×2	NRS 80	105	28	8	3.5	97	77	100	M8	18.6	520	305

EZZE-MOUNTTM

PRECISION SCREW SUPPORTS


Nook EZZE-MOUNT™ bearing blocks

BEARING MOUNTS END MACHINING

EZZE-MOUNT™ AND END MACHINING186-20
Glossary and Technical Data186-18
Quick Reference Guide188-19
Machine Ends: Drawings and Codes 192-19
End Bearing Identification19
Universal Mount Single and Double Bearing Support196-19
Flange-Mount Single and Double Bearing Support198-19
Universal Mount Bearing Support with Motor Mount20
Flange Mount Bearing Support with Motor Mount20

INTRODUCTION

Linear motion applications utilizing a ball screw or an acme screw require this screw end machining matched with precision bearing mounts. Nook Industries, Inc. offers both the bearing mounts and end machining as a complete assembly.

Nook Industries can provide the following end machining services:

- Screws cut to precision lengths
- Annealing
- Straightening
- CNC turning and milling
- Grindina
- Assembly of bearing mounts
- Inspection
- Specialized material handling and packaging

Bearing mounts must be designed to withstand both the radial and the thrust loads generated by the application screw assembly.

Nook Industries offers EZZE-MOUNT™ precision bearing blocks, that can be assembled to precision machined screws, providing a complete solution for most linear motion applications.

EZZE-MOUNT™ bearing mounts are available with integral motor mounts to offer complete motorized systems.

Motor mounts are available for standard (17, 23, 34, 42), as well as, IEC frames for servo and stepper motor applications.

GLOSSARY AND DEFINITIONS

EZZE-MOUNT™ **←**

EZZE-MOUNT™ bearing blocks contain precision anti-friction bearings and are designed to be used with both ball screws and acme screws. Single and double bearing base mount and flange mount versions of EZZE-MOUNT™ bearing blocks are available.

STANDARD ENDS

For each screw size, Nook industries has designed a family of standard machined ends applicable to a variety of bearing arrangements.

The use of standard machined end designs offer quick deliveries. See page 192-194 for details.

LAND DIAMETER

The land diameter is the outside diameter of the screw. The difference between the land diameter and the bearing journal is the resulting bearing shoulder.

ROOT DIAMETER

The diameter of the screw measured at the bottom of the thread. This diameter is used for determining journal sizes. If the bearing journal diameter is larger than the root diameter, thread tracings may be visible. Generally, these tracings do not have an effect on bearing performance.

JOURNAL

A smooth diameter machined on the end of screw used as a mounting surface for bearings, couplings, pulleys, gears, etc.

STRAIGHTNESS

Although Nook Industries PowerAc™ and PowerTrac™ screws are manufactured from straight, cylindrical material, internal stresses may cause the material to bend. When ordering random lengths or cut material without end machining, straightening is recommended. Handling or machining of screws can also cause the material to bend. Before, during and after machining, additional straightening is required.

ANNEALING

Annealing is a process which softens the steel to allow for easier end machining. Annealing is usually required to machine the ends of ball screws. Due to its effect on the precision lead accuracies of XPR and SGT ball screws, annealing is not recommended for these products. Hard turning will allow the screw hardened thread to be removed. Acme screws typically do not require annealing before end machining.

END FIXITY

End fixity refers to the method by which the ends of the screw are supported. The degree of end fixity is related to the amount of restraint of the ends of the screw.

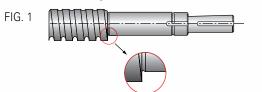
The three basic types of end fixity are:

Free No support

Shaft restrained against radial and/or axial loads Simple

Fixed Shaft rigidly restrained against radial, axial and

moment loads


See pages 12-13 and 66-67 for a more detailed definition of end fixity.

LOCKNUTTHREADS

Locknut threads are machined to allow the bearing retention on the screw shaft by means of a locknut. The thread used on standard machined ends follows American National Form NS Class 3. Precision ground locknuts are available from Nook Industries on special order.

UNDERCUTS AND RADII

Whenever a shaft changes diameter, an undercut or a radius is machined into the transition to minimize stress concentration. Undercuts are preferred for bearing shoulders because they allow clearance for the corner of the bearing. (See FIG. 1)

CONCENTRICITY

Concentricity refers to multiple diameters sharing the same center. For end machining, close concentricity allows all components to rotate around the same axis resulting in smooth operation and long operating

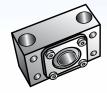
APPROVAL DRAWINGS

If custom ends or special dimensions are desired, an approval drawing can be developed after the order is entered. These drawings will show all the critical dimensions with appropriate tolerance and require customer signature prior to manufacture.

nookindustries.com

EZZE-MOUNTS

SCREW SUPPORTS


EZZE-MOUNT™

4

QUICK REFERENCE:

MACHINED ENDS BEARING SUPPORTS

ACME SCREWS

Universal Mount Double Bearing

Universal Mount Single Bearing

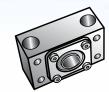
Flange Mount Double Bearing

Flange Mount Single Bearing

	END (-ODE -		EZZE-N	IOUNT™	
NOMINAL	TY		UNIVERSA	L MOUNTS	FLANGE	MOUNTS
DIA-LEAD	1,2,3	4	Double	Single	Double	Single
³ ⁄ ₄ - 2	12	8	EZM-3102	EZM-4012	EZF-3012	EZF-4012
3/4 - 3	12	8	EZM-3012	EZM-4012	EZF-3012	EZF-4012
³ ⁄ ₄ - 5	12	8	EZM-3012	EZM-4012	EZF-3012	EZF-4012
³ ⁄ ₄ - 6	12	8	EZM-3012	EZM-4012	EZF-3012	EZF-4012
³ ⁄ ₄ - 10	15	8	EZM-3015	EZM-4015	EZF-3015	EZF-4015
7 /8 - 6	15	10	EZM-3015	EZM-4015	EZF-3015	EZF-4015
1 - 1	20	12	EZM-2020	EZM-4020	EZF-2020	EZF-4020
1 - 2	17	10	EZM-3017	EZM-4017	EZF-3017	EZF-4017
1 - 4	17	10	EZM-3017	EZM-4017	EZF-3017	EZF-4017
1 - 5	17	10	EZM-3017	EZM-4017	EZF-3017	EZF-4017
1 - 6	17	10	EZM-3017	EZM-4017	EZF-3017	EZF-4017
1 - 10	20	12	EZM-2020	EZM-4020	EZF-2020	EZF-4020
11/8 - 5	20	12	EZM-2020	EZM-4020	EZF-2020	EZF-4020
11/4 - 4	20	12	EZM-2020	EZM-4020	EZF-2020	EZF-4020
11/4 - 5	25	16	EZM-3025	EZM-4025	EZF-3025	EZF-4025
1½ - 2	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030
1 ½ - 2 ½	25	16	EZM-3025	EZM-4025	EZF-3025	EZF-4025
1½ - 4	30	19	EZM-2030	EZM-2030	EZF-2030	EZF-2030
1½ - 5	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030
1½ - 10	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030
13/4 - 4	35	19	_	_	_	_
2 - 2	35	19	_	_	_	_
2 - 4	40	22	_	_	_	_
2 - 5	40	28	_	_	_	_
21/4 - 2	40	24	_	_	_	_
21/4 - 4	45	28	EZM-3045	EZM-4045	EZF-3045	EZF-4045
21/2 - 2	45	28	EZM-3045	EZM-4045	EZF-3045	EZF-4045
2½-3	50	32	_	_	_	_
2½-4	50	32	_	_	_	_
3 - 2	60	39	EZM-3060	EZM-4060	_	_
3% -11/2	65	39*	_	_	_	_
3¾ -1½	75	48	_	_	_	_
4½ -1½	95	55	_	_	_	_
5 -11/2	105	67	_	_	_	_
6 -11/2			_	_	_	_

* Some journals may show tracings of the thread.
See PowerAcTM pages 34-49 for screw dimensions. Note: When selecting the bearing support for an application with high axial loads, the capacities of the bearings and locknuts must be considered. See page 195.

QUICK REFERENCE:


MACHINED ENDS BEARING SUPPORTS

TRAPEZOIDAL SCREWS

				EZZE-N	ZZE-MOUNT™				
NOMINAL	END C		UNIVERSA	L MOUNTS	FLANGE	MOUNTS			
DIA-LEAD	1,2,3	4	Double	Single	Double	Single			
Tr 20×4	12	8	EZM-3017	EZM-3017	EZF-3017	EZF-3017			
Tr 12×3	7	4	EZM-1007	EZM-4007	EZF-1007	EZF-4007			
Tr 16×4	10 6		EZM-3010	EZM-4010	EZF-3010	EZF-4010			
Tr 20×4	12 8		EZM-3012	EZM-4012	EZF-3012	EZF-4012			
Tr 26×6	17	10	EZM-3017	EZM-4017	EZF-3017	EZF-4017			
Tr 40×7	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030			
Tr 55×12	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030			
Tr 65×12	45 28		EZM-3045	EZM-4045	EZF-3045 EZF-4045				

^{*} Some journals may show tracings of the thread

See PowerAc[™] pages 52-57 for screw dimensions. Note: When selecting the bearing support for an application with high axial loads, the capacities of the bearings and locknuts must be considered. See page 195

Universal Mount Double Bearing

Universal Mount Single Bearing

Flange Mount Double Bearing

Flange Mount Single Bearing

QUICK REFERENCE:

MACHINED ENDS BEARING SUPPORTS \leftarrow

INCH SRT, XPR AND SGT PRECISION BALL SCREWS

Universal Mount Double Bearing

Universal Mount Single Bearing

Flange Mount Double Bearing

Flange Mount Single Bearing

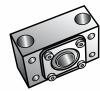
		EZZE-MOUNT™ CODE 'PE UNIVERSAL MOUNTS FLANGE MOUNTS									
NIONAINIAI	END (UNIVERSA	L MOUNTS	FLANGE	MOUNTS					
NOMINAL DIA-LEAD	1,2,3	4	Double	Single	Double	Single					
0375-0125	7	4	EZM-1007	EZM-4007	EZF-1007	EZF-4007					
0500-0200	10	6	EZM-3010	EZM-4010	EZF-3010	EZF-4010					
0500-0500	8	6	EZM-1008	EZM-4008	EZF-1008	EZF-4008					
0631-0200	12	8	EZM-3012	EZM-4012	EZF-3012	EZF-4012					
0631-0500	12	8	EZM-3012	EZM-4012	EZF-3012	EZF-4012					
0631-1000	12	8	EZM-3012	EZM-4012	EZF-3012	EZF-4012					
0750-0200	15	8	EZM-3015	EZM-4015	EZF-3015	EZF-4015					
0750-0500	15	8	EZM-3015	EZM-4015	EZF-3015	EZF-4015					
0875-0200	17	10	EZM-3017	EZM-4017	EZF-3017	EZF-4017					
1000-0200	20	12	EZM-2020	EZM-4020	EZF-2020	EZF-4020					
1000-0250	20	12	EZM-2020	EZM-4020	EZF-2020	EZF-4020					
1000-0500	20	12	EZM-2020	EZM-4020	EZF-2020	EZF-4020					
1000-1000	20	12	EZM-2020	EZM-4020	EZF-2020	EZF-4020					
1150-0200	25	16	EZM-3025	EZM-4025	EZF-3025	EZF-4025					
1171-0413	20	12	EZM-2020	EZM-4020	EZF-2020	EZF-4020					
1250-0200	25	16	EZM-3025	EZM-4025	EZF-3025	EZF-4025					
1250-0500	25	16	EZM-3025	EZM-4025	EZF-3025	EZF-4025					
1500-0200	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030					
1500-0250	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030					
1500-0473	25	16	EZM-3025	EZM-4025	EZF-3025	EZF-4025					
1500-0500 SRT	25	16	EZM-3025	EZM-4025	EZF-3025	EZF-4025					
1500-0500 XPR	25	16	EZM-3025	EZM-4025	EZF-3025	EZF-4025					
1500-0500 SGT	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030					
1500-1000	25	16	EZM-3025	EZM-4025	EZF-3025	EZF-4025					
1500-1875	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030					
2000-0200	45	28	EZM-3045	EZM-4045	EZF-3045	EZF-4045					
2000-0400	45*	28*	EZM-3045	EZM-4045	EZF-3045	EZF-4045					
2250-0500	45	28	EZM-3045	EZM-4045	EZF-3045	EZF-4045					
2250-1000	45	28	EZM-3045	EZM-4045	EZF-3045	EZF-4045					
2500-0250	50	32	_	_	_	_					
2500-0500	00-0500 50 32 —		_	_	_						
3000-0660	60	39	EZM-3060	EZM-4060	_	_					
3000-1500	60	39	EZM-3060	EZM-4060	_	_					
4000-1000	80	48	EZM-3080		_						
6000-1000		_		_	_	_					

^{*} Some journals may show tracings of the thread

See PowerTrac[™] pages 86-139 for screw dimensions. Note: When selecting the bearing support for an application with high axial loads, the capacities of the bearings and locknuts must be considered. See page 183.

QUICK REFERENCE:

MACHINED ENDS BEARING SUPPORTS \leftarrow



METRIC MRT AND PMT BALL SCREWS

			EZZE-MOUNT™										
NOMINAL	END C		UNIVERSA	L MOUNTS	FLANGE	MOUNTS							
DIA-LEAD	1,2,3	4	Double	Single	Double	Single							
16 × 5 MRT/PMT	12	8	EZM-3012	EZM-4012	EZF-3012	EZF-4012							
20 × 5 MRT/PMT	15	8	EZM-3015	EZM-4015	EZF-3015	EZF-4015							
25 × 5 MRT/PMT	20	12	EZM-2020	EZM-4020	EZF-2020	EZF-4020							
40 × 10 MRT/PMT	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030							
40 × 40 MRT	30	19	EZM-2030	EZM-4030	EZF-2030	EZF-4030							
50 × 10 MRT/PMT	45	28	EZM-3045	EZM-4045	EZF-3045	EZF-4045							
50 × 50 MRT	40	24	_	_	_	_							
63 × 12 MRT/PMT	50	32	_	_	_	_							


See PowerTrac[™] pages 150-161 for screw dimensions.

Note: When selecting the bearing support for an application with high axial loads, the capacities of the bearings and locknuts must be considered. See page 195.

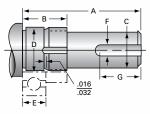
EZZE-MOUNT SCREW SUPPORTS

Universal Mount Double Bearing

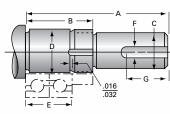
Universal Mount Single Bearing

Flange Mount Double Bearing

Flange Mount Single Bearing

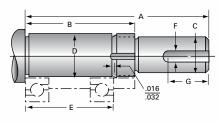


MACHINED ENDS **DRAWINGS AND CODES**

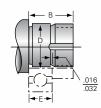

EZZE-MOUNT" SCREW SUPPORTS

Specifying standard machined ends results in quicker deliveries. The machined ends shown below represent designs that are compatible with common application requirements for either simple or fixed bearing support. Included in the chart are the locknut and lockwasher identication. These standard ends may be machined and ground to finish size. NOTE: A Type 1N end is required for single bearing EZZE-MOUNTTM. A Type 3 K, L, or N end is required for double bearing EZZE-MOUNT™

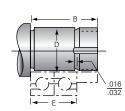
Type 1K (with keyway) Type 1L (without keyway)

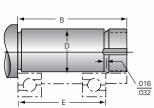


Type 2K (with keyway) Type 2L (without keyway)



TYPE 3 (K, L, N)


Type 3K (with keyway) Type 3L (without keyway)


Type 1N

Type 2N

Type 3N

TYPE 1 (K, L, N) Typical Journal for

TYPE 2 (K, L, N) Typical Journal for Multiple Sets of Typical Journal for

COMMON DIMENSIONS FOR

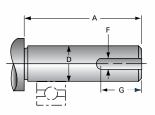
А			1						TYPE 1, 2, 3 (K, L, N)					
	В	Е	А	В	E	А	В	E	С	D	F	G	Locknut	Lock- washer
0.63	0.36	0.156	0.75	0.52	0.312	1.09	0.83	0.624	.093/.092	.1251/.1248	N/A	N/A	#5-40	N/A
0.88	0.55	0.236	1.09	0.78	0.472	1.56	1.26	0.944	.125/.124	.1970/.1967	N/A	N/A	#10-32	N/A
0.88	0.55	0.236	1.09	0.78	0.472	1.56	1.26	0.944	.125/.124	.2363/.2360	N/A	N/A	#10-32	N/A
1.12	0.65	0.276	1.41	0.93	0.552	1.94	1.48	1.104	.187/.186	.2757/.2754	0.063	0.34	1/4-20	N/A
1.31	0.68	0.276	1.56	0.96	0.552	2	1.44	1.06	.250/.249	.3151/.3148	0.094	0.46	5/16-24	N/A
1.38	0.72	0.315	1.69	1.04	0.63	2.38	1.81	1.438	.250/.249	.3544/.3541	0.094	0.46	5/16-24	N/A
1.37	0.69	0.315	1.67	1	0.63	2.5	1.81	1.438	.312/.311	.3939/.3936	0.125	0.5	N-00	W-00
2.11	0.81	0.394	2.5	1.2	0.788	3.29	1.99	1.576	.406/.405	.4726/.4723	0.125	1	N-01	VV-01
2.15	0.84	0.433	2.59	1.27	0.866	3.5	2.18	1.732	.500/.499	.5908/.5905	0.125	1	N-02	W-02
2.23	0.92	0.472	2.71	1.39	0.944	3.65	2.33	1.888	.500/.499	.6695/.6692	0.125	1	N-03	W-03
2.37	1.06	0.551	2.93	1.61	1.102	4.03	2.71	2.204	.625/.624	.7877/.7873	0.188	1	N-04	W-04
2.68	1.12	0.591	3.27	1.71	1.182	4.45	2.89	2.364	.750/.749	.9846/.9842	0.188	1	N-05	W-05
2.97	1.16	0.63	3.6	1.79	1.26	4.86	3.05	2.52	1.000/.999	1.1814/1.1810	0.25	1.50	N-06	W-06
3.33	1.23	0.669	4	1.9	1.338	5.34	3.24	2.676	1.250/1.249	1.3784/1.3779	0.25	1.50	N-07	W-07
3.65	1.46	0.906	4.55	2.37	1.812	6.37	4.18	3.624	1.375/1.374	1.5752/1.5747	0.313	1.5	N-08	W-08
3.73	1.54	0.984	4.71	2.52	1.968	6.68	4.49	3.936	1.375/1.374	1.7721/1.7716	0.313	1.5	N-09	W-09
4.56	1.68	1.063	5.62	2.75	2.126	7.75	4.87	4.252	1.750/1.749	1.9689/1.9684	0.375	2.3	N-10	W-10
5.56	1.88	1.221	6.78	3.1	2.442	9.22	5.54	4.884	2.250/2.249	2.3627/2.3621	0.5	2.75	N-12	W-12
6.71	1.96	1.299	7.99	3.24	2.598	10.59	5.84	5.197	2.375/2.374	2.5591/2.5585	0.625	3.7	N-13	W-13
7.68	2.18	1.457	9.14	3.64	2.914	11.33	6.56	5.828	2.750/2.749	2.9533/2.9527	0.625	3.7	AN-15	W-15
6.95	2.26	1.535	8.49	3.8	3.07	11.56	6.87	6.14	3.000/2.998	3.1501/3.1495	0.75	3.9	AN-16	W-16
9.6	2.6	1.772	11.37	4.37	3.544	14.92	7.92	7.088	3.500/3.499	3.7402/3.7394	0.875	6	AN-19	W-19
10.84	2.84	1.929	12.76	4.76	3.858	16.62	8.62	7.716	4.000/3.999	4.1345/4.1338	1	6.75	AN-21	W-21
	0.63 0.88 0.88 1.12 1.31 1.38 1.37 2.11 2.15 2.23 2.37 2.68 2.97 3.33 3.65 3.73 4.56 5.56 6.71 7.68 6.95 9.6	0.63 0.36 0.88 0.55 0.88 0.55 1.12 0.65 1.31 0.68 1.38 0.72 1.37 0.69 2.11 0.81 2.15 0.84 2.23 0.92 2.37 1.06 2.68 1.12 2.97 1.16 3.33 1.23 3.65 1.46 3.73 1.54 4.56 1.68 5.56 1.88 6.71 1.96 7.68 2.18 6.95 2.26 9.6 2.6	0.63 0.36 0.156 0.88 0.55 0.236 0.88 0.55 0.236 1.12 0.65 0.276 1.31 0.68 0.276 1.38 0.72 0.315 1.37 0.69 0.315 2.11 0.81 0.394 2.15 0.84 0.433 2.23 0.92 0.472 2.37 1.06 0.551 2.68 1.12 0.591 2.97 1.16 0.63 3.33 1.23 0.669 3.65 1.46 0.906 3.73 1.54 0.984 4.56 1.68 1.063 5.56 1.88 1.221 6.71 1.96 1.299 7.68 2.18 1.457 6.95 2.26 1.535 9.6 2.6 1.772	0.63 0.36 0.156 0.75 0.88 0.55 0.236 1.09 0.88 0.55 0.236 1.09 1.12 0.65 0.276 1.41 1.31 0.68 0.276 1.56 1.38 0.72 0.315 1.69 1.37 0.69 0.315 1.67 2.11 0.81 0.394 2.5 2.15 0.84 0.433 2.59 2.23 0.92 0.472 2.71 2.37 1.06 0.551 2.93 2.68 1.12 0.591 3.27 2.97 1.16 0.63 3.6 3.33 1.23 0.669 4 3.65 1.46 0.906 4.55 3.73 1.54 0.984 4.71 4.56 1.68 1.063 5.62 5.56 1.88 1.221 6.78 6.71 1.96 1.299 7.99 <td>0.63 0.36 0.156 0.75 0.52 0.88 0.55 0.236 1.09 0.78 0.88 0.55 0.236 1.09 0.78 1.12 0.65 0.276 1.41 0.93 1.31 0.68 0.276 1.56 0.96 1.38 0.72 0.315 1.69 1.04 1.37 0.69 0.315 1.67 1 2.11 0.81 0.394 2.5 1.2 2.15 0.84 0.433 2.59 1.27 2.23 0.92 0.472 2.71 1.39 2.37 1.06 0.551 2.93 1.61 2.68 1.12 0.591 3.27 1.71 2.97 1.16 0.63 3.6 1.79 3.33 1.23 0.669 4 1.9 3.65 1.46 0.906 4.55 2.37 3.73 1.54 0.984 4.71</td> <td>0.63 0.36 0.156 0.75 0.52 0.312 0.88 0.55 0.236 1.09 0.78 0.472 0.88 0.55 0.236 1.09 0.78 0.472 1.12 0.65 0.276 1.41 0.93 0.552 1.31 0.68 0.276 1.56 0.96 0.552 1.38 0.72 0.315 1.69 1.04 0.63 1.37 0.69 0.315 1.67 1 0.63 2.11 0.81 0.394 2.5 1.2 0.788 2.15 0.84 0.433 2.59 1.27 0.866 2.23 0.92 0.472 2.71 1.39 0.944 2.37 1.06 0.551 2.93 1.61 1.102 2.68 1.12 0.591 3.27 1.71 1.182 2.97 1.16 0.63 3.6 1.79 1.26 3.33 1.23</td> <td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.88 0.55 0.236 1.09 0.78 0.472 1.56 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.31 0.68 0.276 1.56 0.96 0.552 2 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.37 0.69 0.315 1.67 1 0.63 2.5 2.11 0.81 0.394 2.5 1.2 0.788 3.29 2.15 0.84 0.433 2.59 1.27 0.866 3.5 2.23 0.92 0.472 2.71 1.39 0.944 3.65 2.37 1.06 0.551 2.93 1.61 1.102 4.03 2.68 1.12 0.591 3.27 1.71 <td< td=""><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 2.15 0.84 0.433 2.59 1.27 0.866 3.5 2.18 2.23 0.92 0.472 2.71 1.39 0.944 3.65 2.33 2.37 1.06 0.551 <t< td=""><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 2.15 0.84 0.433 2.59 1.27 0.866 3.5 2.18 1.732 2.23 0.92 0.472</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 .406/.405 2.15 0.84 0.433</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 2.11 0.81 0.394 2.5 1.2</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 N/A 1.12 0.65 0.276 1.41 0.93 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 0.094 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 0.125 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 .406/.405 .4726/.4723</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A N/A 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A N/A N/A 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 0.063 0.34 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 0.46 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 0.094 0.46 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 0.125 0.5 2.11 0.81 0.433 2.59 1.2<</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A N/A #5-40 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A N/A #10-32 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 N/A N/A #10-32 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 0.063 0.34 /4-20 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 0.46 /4-24 1.33 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .250/.249 .3544/.3541 0.094 0.46 /4-24 <</td></t<></td></td<></td>	0.63 0.36 0.156 0.75 0.52 0.88 0.55 0.236 1.09 0.78 0.88 0.55 0.236 1.09 0.78 1.12 0.65 0.276 1.41 0.93 1.31 0.68 0.276 1.56 0.96 1.38 0.72 0.315 1.69 1.04 1.37 0.69 0.315 1.67 1 2.11 0.81 0.394 2.5 1.2 2.15 0.84 0.433 2.59 1.27 2.23 0.92 0.472 2.71 1.39 2.37 1.06 0.551 2.93 1.61 2.68 1.12 0.591 3.27 1.71 2.97 1.16 0.63 3.6 1.79 3.33 1.23 0.669 4 1.9 3.65 1.46 0.906 4.55 2.37 3.73 1.54 0.984 4.71	0.63 0.36 0.156 0.75 0.52 0.312 0.88 0.55 0.236 1.09 0.78 0.472 0.88 0.55 0.236 1.09 0.78 0.472 1.12 0.65 0.276 1.41 0.93 0.552 1.31 0.68 0.276 1.56 0.96 0.552 1.38 0.72 0.315 1.69 1.04 0.63 1.37 0.69 0.315 1.67 1 0.63 2.11 0.81 0.394 2.5 1.2 0.788 2.15 0.84 0.433 2.59 1.27 0.866 2.23 0.92 0.472 2.71 1.39 0.944 2.37 1.06 0.551 2.93 1.61 1.102 2.68 1.12 0.591 3.27 1.71 1.182 2.97 1.16 0.63 3.6 1.79 1.26 3.33 1.23	0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.88 0.55 0.236 1.09 0.78 0.472 1.56 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.31 0.68 0.276 1.56 0.96 0.552 2 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.37 0.69 0.315 1.67 1 0.63 2.5 2.11 0.81 0.394 2.5 1.2 0.788 3.29 2.15 0.84 0.433 2.59 1.27 0.866 3.5 2.23 0.92 0.472 2.71 1.39 0.944 3.65 2.37 1.06 0.551 2.93 1.61 1.102 4.03 2.68 1.12 0.591 3.27 1.71 <td< td=""><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 2.15 0.84 0.433 2.59 1.27 0.866 3.5 2.18 2.23 0.92 0.472 2.71 1.39 0.944 3.65 2.33 2.37 1.06 0.551 <t< td=""><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 2.15 0.84 0.433 2.59 1.27 0.866 3.5 2.18 1.732 2.23 0.92 0.472</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 .406/.405 2.15 0.84 0.433</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 2.11 0.81 0.394 2.5 1.2</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 N/A 1.12 0.65 0.276 1.41 0.93 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 0.094 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 0.125 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 .406/.405 .4726/.4723</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A N/A 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A N/A N/A 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 0.063 0.34 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 0.46 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 0.094 0.46 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 0.125 0.5 2.11 0.81 0.433 2.59 1.2<</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A N/A #5-40 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A N/A #10-32 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 N/A N/A #10-32 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 0.063 0.34 /4-20 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 0.46 /4-24 1.33 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .250/.249 .3544/.3541 0.094 0.46 /4-24 <</td></t<></td></td<>	0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 2.15 0.84 0.433 2.59 1.27 0.866 3.5 2.18 2.23 0.92 0.472 2.71 1.39 0.944 3.65 2.33 2.37 1.06 0.551 <t< td=""><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 2.15 0.84 0.433 2.59 1.27 0.866 3.5 2.18 1.732 2.23 0.92 0.472</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 .406/.405 2.15 0.84 0.433</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 2.11 0.81 0.394 2.5 1.2</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 N/A 1.12 0.65 0.276 1.41 0.93 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 0.094 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 0.125 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 .406/.405 .4726/.4723</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A N/A 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A N/A N/A 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 0.063 0.34 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 0.46 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 0.094 0.46 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 0.125 0.5 2.11 0.81 0.433 2.59 1.2<</td><td>0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A N/A #5-40 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A N/A #10-32 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 N/A N/A #10-32 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 0.063 0.34 /4-20 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 0.46 /4-24 1.33 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .250/.249 .3544/.3541 0.094 0.46 /4-24 <</td></t<>	0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 2.15 0.84 0.433 2.59 1.27 0.866 3.5 2.18 1.732 2.23 0.92 0.472	0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 .406/.405 2.15 0.84 0.433	0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 2.11 0.81 0.394 2.5 1.2	0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 N/A 1.12 0.65 0.276 1.41 0.93 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 0.094 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 0.125 2.11 0.81 0.394 2.5 1.2 0.788 3.29 1.99 1.576 .406/.405 .4726/.4723	0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A N/A 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A N/A N/A 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 0.063 0.34 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 0.46 1.38 0.72 0.315 1.69 1.04 0.63 2.38 1.81 1.438 .250/.249 .3544/.3541 0.094 0.46 1.37 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .312/.311 .3939/.3936 0.125 0.5 2.11 0.81 0.433 2.59 1.2<	0.63 0.36 0.156 0.75 0.52 0.312 1.09 0.83 0.624 .093/.092 .1251/.1248 N/A N/A #5-40 0.88 0.55 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .1970/.1967 N/A N/A #10-32 1.12 0.65 0.236 1.09 0.78 0.472 1.56 1.26 0.944 .125/.124 .2363/.2360 N/A N/A #10-32 1.12 0.65 0.276 1.41 0.93 0.552 1.94 1.48 1.104 .187/.186 .2757/.2754 0.063 0.34 /4-20 1.31 0.68 0.276 1.56 0.96 0.552 2 1.44 1.06 .250/.249 .3151/.3148 0.094 0.46 /4-24 1.33 0.69 0.315 1.67 1 0.63 2.5 1.81 1.438 .250/.249 .3544/.3541 0.094 0.46 /4-24 <

END TYPES

- 1K, 2K, 3K and 4K are designed with a shaft extension and keyway for square keys.
- 1L, 2L, 3L and 4L are designed with a shaft extension without a keyway.
- 1N, 2N, 3N and 4N are designed to be a non-driven support end.
- Double bearing supports use a Type 3N, 3L and 3K.
- Single bearing supports use Type 1N.

Where standard ends do not satisfy the application requirements, special ends may be machined to customer specifications. Please submit a print for a prompt and competitive quotation.

PRECISION LOCKNUTS

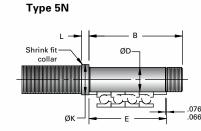

Nook Industries offers precision ground locknuts for extreme applications requiring ground face and precision ground thread with extra thread engagement. These locknuts have radial thread set screws to ensure secure positioning. Please request a catalog.



Examples of custom end machining

MACHINED ENDS **DRAWINGS AND CODES** continued

Type 4K (with keyway) Type 4L (without keyway)



Type 4N

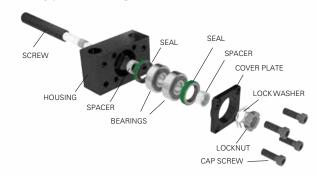
TYPE 4 (K, L, N)

Machine		Typical Jour	nal for Pillow Block		
End Code	А	В	D	F	G
2	.75	.25	.1251 / .1248	N/A	N/A
4	1.38	.50	.2501 / .2498	.063	.63
6	1.50	.75	.3751 / .3748	.125	.75
8	2.63	1.00	.5000 / .4995	.125	1.50
10	2.63	1.25	.6250 / .6245	.188	1.50
12	2.72	1.50	.7500 / .7495	.188	1.50
16	2.84	1.50	1.0000 / .9995	.250	1.50
19	3.25	1.78	1.1875 / 1.1870	.250	1.75
22	4.44	2.06	1.3750 / 1.3745	.313	1.87
24	4.56	2.25	1.5000 / 1.4995	.313	3.00
28	4.94	2.63	1.7500 / 1.7495	.375	3.00
32	5.19	3.50	2.0000 / 1.9995	.500	3.00
39	7.25	3.66	2.4375 / 2.4365	.625	4.69
42	7.75	3.94	2.6250 / 2.6240	.625	4.75
48	8.25	4.50	3.0000 / 2.9990	.750	4.88
55	8.50	5.16	3.4375 / 3.4365	.875	5.00
60	9.38	5.63	3.7500 / 3.7490	1.000	5.38
67	12.13	6.28	4.1875 / 4.1865	1.000	7.00

Type 5K (with keyway) Type 5L (without keyway)

			YPE 5 (K, L)				COMMON D	IMFNSION	S FOR TYP	F 5 (K I N)	(in)
Machine		Typical Journal fo			n)		00			_ 0 (,	····/
End Code	А	С	F	G	Н	В	D	Е	K	L	LOCK NUT
12	4.61	.394/.393	0.118	1.02	0.08	3.35	.4728/.4723	2.717	0.71	0.31	SFZ 12 × 1
15	5.24	.472/.471	0.157	1.30	0.12	3.66	.5909/.5904	2.913	0.87	0.35	SFZ 15 × 1
17	5.55	.591/.590	0.197	1.30	0.12	3.98	.6696/.6692	3.150	0.94	0.35	SFZ 17 × 1
20	5.94	.669/.668	0.197	1.46	0.16	4.13	.7878/.7872	3.307	1.10	0.35	SFZ 20 × 1
25	6.69	.787/.786	0.236	1.61	0.20	4.69	.9846/.9841	3.740	1.26	0.39	SFZ 25 × 1.5
35	8.07	1.181/1.180	0.315	2.01	0.16	5.63	1.3784/1.3778	4.606	1.77	0.39	SFZ 35 × 1.5
40	8.50	1.378/1.377	0.394	2.01	0.16	6.02	1.5752/1.5746	5.000	1.97	0.47	SFZ 40 × 1.5
45	8.98	1.575/1.574	0.472	2.01	0.20	6.42	1.7721/1.7715	5.394	2.17	0.47	SFZ 45 × 1.5
55	10.43	1.969/1.968	0.551	2.52	0.24	7.24	2.1658/2.1651	6.063	2.56	0.55	SFZ 55 × 2
60	11.46	2.165/2.164	0.630	2.80	0.24	7.94	2.3627/2.3619	6.732	2.95	0.63	SFZ 60 × 2
70	13.15	2.362/2.361	0.709	3.58	0.28	8.74	2.7564/2.7556	7.402	3.35	0.71	SFZ 70 × 2
75	13.62	2.559/2.558	0.709	3.58	0.31	9.13	2.9532/2.9525	7.795	3.54	0.71	SFZ 75 × 2

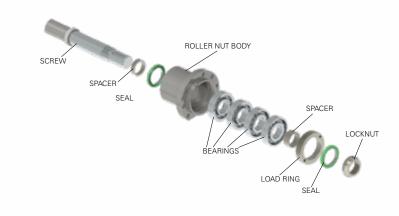
CAUTION: When using fixed bearing mounts on both ends, contact Nook Engineering to determine the mount-to-mount length tolerance of the final assembly.


EZZE-MOUNT™

END BEARING IDENTIFICATION

EZM SINGLE BEARING

EZM DOUBLE BEARING



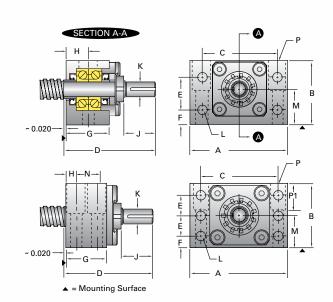
			Locknuts Max
EZM Part#	Bearing	Locknut No.	Axial Load Lb
EZM-1007* EZF-1007*	627-2RS1	1/4"-20	1800
EZM-1008* EZF-1008*	608-2RS1	5/16"-24	2300
EZM-1009* EZF-1009*	629-2RS1	5/16"-24	2300
EZM-3010* EZF-3010*	6000-2RS1	N-00	4100
EZM-3012 EZF-3012	7301	N-01	6900
EZM-3015 EZF-3015	7302	N-02	8100
EZM-3017 EZF-3017	7303	N-03	9900
EZM-2020 EZF-2020	7204	N-04	13200
EZM-3025 EZF-3025	7305	N-05	16200
EZM-2030 EZF-2030	7206	N-06	17500
EZM-3045 EZF-3045	7309	N-09	26500
EZM-3060	7312	N-12	37000
EZM-3080	7316	AN-16	53700

*Use (2) deep groove ball bearings, all others - use (2) angular contact (40 deg.) Universal ground ball bearings in back-to back configuration.

EZRF

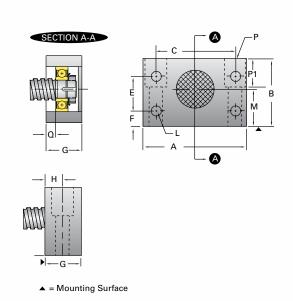
EZRF Part#	Bearing	Locknut No.	Locknuts Max Axial Load kN
EZRF-3012	7301	SFZ 12×1	40
EZRF-3015	7302	SFZ 15×1	60
EZRF-3017	7303	SFZ 17×1	80
EZRF-3020	7304	SFZ 20×1	90
EZRF-3025	7305	SFZ 25×1.5	130
EZRF-3035	7307	SFZ 35×1.5	190
EZRF-3040	7308	SFZ 40×1.5	210
EZRF-3045	7309	SFZ 45×1.5	240
EZRF-3055	7311	SFZ 55×2	340
EZRF-3060	7312	SFZ 60×2	380
EZRF-3070	7314	SFZ 70×2	490
EZRF-3075	7315	SFZ 75×2	520

EZZE-MOUNT™


UNIVERSAL MOUNT SINGLE AND DOUBLE BEARING SUPPORT

Universal-Mount Double

Universal-Mount Double
Double Angular Contact Bearing, which should be used with Type 3 Standard Ends



									L					P					
Double Part No.	А	В	С	D	Е	F	G	Н	J	K Shaft Dia.	Thru (4 or 6)	М	N	Bolt Size (2 or 4)	Thru	C'Bore	P1	Q	End Code
EZM-1007	2.00	1.38	1.50	1.94	0.88	0.25	1.06	0.50	0.46	0.187 0.186	0.22(4)	0.687	_	¹ / ₄ × 1 ³ / ₈ (2)	0.28	0.41	0.41	-	7
EZM-1008	2.00	1.38	1.50	2.00	0.88	0.25	1.06	0.50	0.56	0.250 0.249	0.22(4)	0.687	_	½ × 13/8(2)	0.28	0.41	0.41	-	8
EZM-1009	2.75	2.00	2.00	2.38	1.38	0.31	1.19	0.56	0.56	0.250 0.249	0.28(4)	1.000	_	5/16 × 2(2)	0.34	0.50	0.56	-	9
EZM-3010	2.75	2.00	2.00	2.50	1.38	0.31	1.19	0.56	0.69	0.312 0.311	0.28(4)	1.000	_	5/16 × 2(2)	0.34	0.50	0.56	-	10
EZM-3012	3.50	2.22	2.75	3.29	1.25	0.50	1.38	0.69	1.30	0.406 0.405	0.28(4)	1.187	_	3/8 × 13/4(2)	0.41	0.62	1.00	_	12
EZM-3015	3.50	2.52	2.75	3.50	1.25	0.80	1.38	0.69	1.30	0.500 0.499	0.28(4)	1.438	_	3/8 × 21/8(2)	0.41	0.62	1.00	_	15
EZM-3017	4.50	2.69	3.38	3.65	1.38	0.62	1.69	0.84	1.30	0.500 0.499	0.41(4)	1.500	_	½ × 21/4(2)	0.53	0.88	1.25	_	17
EZM-2020	5.00	3.03	3.75	4.03	1.50	0.75	1.72	0.86	1.30	0.625 0.624	0.47(4)	1.625	_	5/8 × 21/2(2)	0.66	1.00	1.50	_	20
EZM-3025	6.50	3.69	4.75	4.45	2.00	0.88	1.94	0.97	1.61	0.750 0.749	0.66(4)	1.875	_	½ × 3½(2)	0.91	1.38	1.75	_	25
EZM-2030	6.50	3.69	4.75	4.86	2.00	0.88	1.94	0.97	1.81	1.000 0.999	0.66(4)	1.875	_	½ × 3½(2)	0.91	1.38	1.75	-	30
EZM-3045	8.50	5.62	6.62	6.68	1.81	1.00	3.47	0.88	2.19	1.375 1.374	0.81(6)	2.812	1.71	1 × 5(4)	1.03	1.56	2.13	-	45
EZM-3060	10.00	7.50	8.00	9.22	2.50	1.50	4.19	1.03	3.68	2.250 2.249	1.03(6)	4.000	2.13	1 × 5(4)	1.03	1.56	4.00	-	60
EZM-3080	12.50	8.50	10.00	11.56	2.75	1.75	5.13	1.219	4.69	3.000 2.998	1.28(6)	4.500	2.68	1½ × 4¾(4)	1.28	1.94	4.75	_	80

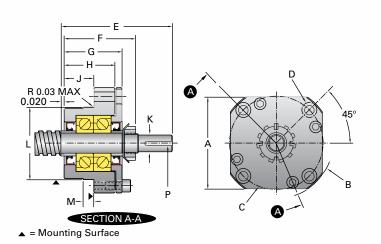
Universal-Mount Single

Single Radial Bearing, which should be used with Type 1 Standard Ends

Cimalo												L Thru			Dol+ Cino	Р				
Single Part No.	Α	В	С	D	Е	F		G	Н	J	K Shaft Dia.	(4 or 6)	М	N	Bolt Size (2 or 4)	Thru	C'Bore	P1	Q	End Code
EZM-4007	2.00	1.38	1.50	_	0.88	0.2	5 1.	.06	0.50	_	_	0.22(4)	0.687	_	½ × 13/8(2)	0.28	0.41	0.41	0.19	7
EZM-4008	2.00	1.38	1.50	_	0.88	0.2	5 1.	.06	0.50	_	_	0.22(4)	0.687	_	½ × 13/8(2)	0.28	0.41	0.41	0.19	8
EZM-4009	2.75	2.00	2.00	_	1.38	0.3	1 1	.19	0.56	_	_	0.28(4)	1.000	_	⁵ / ₁₆ × 2(2)	0.34	0.50	0.56	0.38	9
EZM-4010	2.75	2.00	2.00	_	1.38	0.3	1 1	.19	0.56	_	_	0.28(4)	1.000	_	⁵ / ₁₆ × 2(2)	0.34	0.50	0.56	0.38	10
EZM-4012	3.50	2.22	2.75	_	1.25	0.5) 1.	.38	0.69	_	_	0.28(4)	1.187	_	³ / ₈ × 1 ³ / ₄ (2)	0.41	0.62	1.00	0.33	12
EZM-4015	3.50	2.52	2.75	_	1.25	0.8	0 1.	.38	0.69	_	_	0.28(4)	1.438	_	$3/8 \times 21/8(2)$	0.41	0.62	1.00	0.33	15
EZM-4017	4.50	2.69	3.38	_	1.38	0.6	2 1.	.69	0.84	_	_	0.41(4)	1.500	_	$\frac{1}{2} \times \frac{21}{4}(2)$	0.53	0.88	1.25	0.38	17
EZM-4020	5.00	3.03	3.75	_	1.50	0.7	5 1.	.72	0.86	_	_	0.47(4)	1.625	_	$5\% \times 2^{1/2}(2)$	0.66	1.00	1.50	0.5	20
EZM-4025	6.50	3.69	4.75	_	2.00	0.8	3 1.	.94	0.97	_	_	0.66(4)	1.875	_	$\frac{7}{8} \times \frac{31}{4}(2)$	0.91	1.38	1.75	0.52	25
EZM-4030	6.50	3.69	4.75	_	2.00	0.8	3 1.	.94	0.97	_	_	0.66(4)	1.875	_	$\frac{7}{8} \times \frac{31}{4}(2)$	0.91	1.38	1.75	0.52	30
EZM-4045	8.50	5.62	6.62	_	1.81	1.0) 3	.47	0.88	_	_	0.81(6)	2.812	1.71	1 × 5(4)	1.03	1.56	2.13	0.98	45
EZM-4060	10.00	7.50	8.00	_	2.50	1.5) 4	.19	1.03	_	_	1.03(6)	4.000	2.13	1 × 5(4)	1.03	1.56	4.00	1.22	60

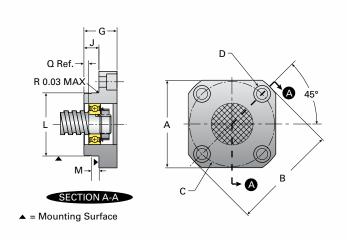
Note: When selecting the bearing support for an application with high axial loads, the capacities of the bearings and locknuts must be considered. See page 195

EZZE-MOUNT™


FLANGE-MOUNT SINGLE AND DOUBLE BEARING SUPPORT

Flange-Mount Double

Double Angular Contact Bearing, which should be used with Type 3 Standard Ends



Double																
Part No.	А	В	С	D Thru	C'bore	E	F	G	Н	J	K Shaft Dia.	L	M	P	Q	END CODE
EZF-1007	1.88	2.44	1.875	0.266	0.44	1.94	1.44	1.06	0.82	0.50	0.187-0.186	1.3775-1.3770	0.188	0.063	_	7
EZF-1008	1.88	2.44	1.875	0.266	0.44	2.00	1.44	1.06	0.82	0.50	0.250-0.249	1.3775-1.3770	0.188	0.094	_	8
EZF-1009	2.00	2.60	2.000	0.266	0.44	2.38	1.81	1.33	1.09	0.71	0.250-0.249	1.4957-1.4951	0.188	0.094	_	9
EZF-3010	2.00	2.60	2.000	0.266	0.44	2.50	1.81	1.33	1.09	0.71	0.312-0.311	1.4957-1.4951	0.190	0.125	_	10
EZF-3012	2.50	3.17	2.500	0.266	0.44	3.29	1.99	1.57	1.38	0.75	0.406-0.405	1.8894-1.8888	0.312	0.125	_	12
EZF-3015	2.70	3.27	2.750	0.281	0.44	3.50	2.10	1.71	1.50	0.88	0.500-0.499	2.1256-2.1250	0.312	0.125	_	15
EZF-3017	3.38	4.03	3.250	0.344	0.53	3.65	2.33	1.93	1.63	0.94	0.500-0.499	2.5193-2.5185	0.312	0.125	_	17
EZF-2020	3.38	4.03	3.250	0.344	0.53	4.03	2.71	1.98	1.72	1.03	0.625-0.624	2.5193-2.5185	0.312	0.188	_	20
EZF-3025	4.38	5.31	4.250	0.531	0.81	4.45	2.89	2.36	1.94	1.19	0.750-0.749	3.1492-3.1482	0.375	0.188	_	25
EZF-2030	4.38	5.31	4.250	0.531	0.81	4.86	3.05	2.36	1.94	1.19	0.999-1.000	3.1492-3.1482	0.375	0.250	_	30
EZF-3045	6.50	7.88	6.313	0.781	1.25	6.68	4.47	4.01	3.22	1.97	1.375-1.374	4.8025-4.8015	0.500	0.313	_	45

Flange-Mount Single

Single Radial Bearing, which should be used with Type 1 Standard Ends

Single																
Part No.	Α	В	С	D Thru	C'bore	E	F	G	Н	J	K Shaft Dia.	L	M	Р	Q	END CODE
EZF-4007	1.88	2.44	1.875	0.266	0.44	_	_	1.00	_	0.40	_	1.3775 1.3770	0.188	_	0.13	7
EZF-4008	1.88	2.44	1.875	0.266	0.44	_	_	1.00	_	0.40	_	1.3775 1.3770	0.188	_	0.13	8
EZF-4009	2.00	2.60	2.000	0.266	0.44	_	_	1.00	_	0.44	_	1.4957 1.4951	0.188	_	0.13	9
EZF-4010	2.00	2.60	2.000	0.266	0.44	_	_	1.00	_	0.44	_	1.4957 1.4951	0.190	_	0.13	10
EZF-4012	2.50	3.17	2.500	0.266	0.44	_	_	1.15	_	0.55	_	1.8894 1.8888	0.312	_	0.13	12
EZF-4015	2.70	3.27	2.750	0.281	0.44	_	_	1.25	_	0.63	_	2.1256 2.1250	0.312	_	0.20	15
EZF-4017	3.38	4.03	3.250	0.344	0.53	_	_	1.32	_	0.63	_	2.5193 2.5185	0.312	_	0.20	17
EZF-4020	3.38	4.03	3.250	0.344	0.53	_	_	1.47	_	0.72	_	2.5193 2.5185	0.312	_	0.20	20
EZF-4025	4.38	5.31	4.250	0.531	0.81	_	_	1.67	_	0.76	_	3.1492 3.1482	0.375	_	0.25	25
EZF-4030	4.38	5.31	4.250	0.531	0.81	_	_	1.67	_	0.76	_	3.1492 3.1482	0.375	_	0.25	30
EZF-4045	6.50	7.88	6.313	0.781	1.25	_	_	2.50	_	1.25	_	4.8025-4.8015	0.500	_	0.50	45

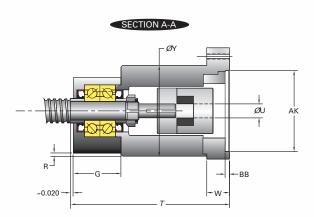
Note: When selecting the bearing support for an application with high axial loads, the capacities of the bearings and locknuts must be considered. See page 195

EZZE-MOUNT™

UNIVERSAL MOUNT BEARING SUPPORT WITH MOTOR MOUNT

Universal Mount with motor mount includes an EZZE-MOUNT™ block with a motor mount for easy, accurate installation of ball screw and acme screw assemblies.

Note: When selecting the bearing support for an application with high axial loads, the capacities of the bearings and locknuts must be considered. See page 195.


1000-0250 SRT RH / U3 / 4N / 41.87 / SBN7508 / FS

EZM-2020-34

EXAMPLES OF EZM DESIGNATIONS:

U1, U2, U3 or U4 = Standard Mount available above UX = modified, further explanation needed (i.e.: Special Frame)

Part No.	Ref. Code	Nema Frame Ref.	AA	ВВ	T	U	S	Y	W	AK	AJ	TAP	R
EZM-1008-17	U1	17	1.75	0.25	3.35	0.25	0.094	1.75	0.52	.868/.871	1.725	#8-32	0.19
EZM-1009-23	U2	23	2.50	0.19	4.10	0.38	0.125	2.50	0.38	1.503/1.506	2.625	#10-32	0.26
EZM-3010-23	U2	23	2.50	0.19	4.10	0.38	0.125	2.50	0.38	1.503/1.506	2.625	#10-32	0.26
EZM-3012-23	U2	23	2.50	0.19	4.48	0.38	0.125	2.50	0.38	1.503/1.506	2.625	#10-32	0.10
EZM-3012-34	U3	34	3.25	0.16	4.92	0.50	0.125	2.50	0.81	2.878/2.882	3.875	#10-32	0.10
EZM-3015-23	U2	23	2.50	0.19	4.90	0.38	0.125	2.50	0.54	1.503/1.506	2.625	#10-32	_
EZM-3015-34	U3	34	3.25	0.16	5.13	0.50	0.125	2.50	0.81	2.878/2.882	3.875	#10-32	0.19
EZM-3017-34	U3	34	3.25	0.16	5.56	0.50	0.125	3.12	0.81	2.878/2.882	3.875	#10-32	0.13
EZM-3017-42	U4	42	4.50	0.19	6.31	0.63	0.188	3.12	1.56	2.504/2.508	5.000	1/4"-20	0.13
EZM-2020-34	U3	34	3.44	0.16	5.96	0.50	0.125	3.44	0.81	2.878/2.882	3.875	#10-32	0.10
EZM-2020-42	U4	42	4.50	0.19	6.71	0.63	0.188	3.44	1.56	2.504/2.508	5.000	1/4"-20	0.10
EZM-3025-34	U3	34	4.00	0.16	6.44	0.50	0.125	4.38	0.81	2.878/2.882	3.875	#10-32	0.31
EZM-3025-42	U4	42	4.50	0.19	7.17	0.63	0.188	4.38	1.56	2.504/2.508	5.000	1/4"-20	0.31
EZM-2030-34	U3	34	4.00	0.16	6.97	0.50	0.125	4.38	0.81	2.878/2.882	3.875	#10-32	0.31
EZM-2030-42	U4	42	4.50	0.19	7.72	0.63	0.188	4.38	1.56	2.504/2.508	5.000	1/4"-20	0.31
EZM-2030-56	U5	56C	6.63	0.19	7.78	0.63	0.188	4.38	1.62	4.502/4.506	5.875	0.41 dia. thru	0.31
EZM-3045-56	U5	56C	6.63	0.19	9.51	0.63	0.188	6.00	2.50	4.502/4.506	5.875	0.41 dia. thru	0.31

NOTE: For complete EZZE-MOUNT™ measurements see chart on page 208 - 210.

EZZE-MOUNT™

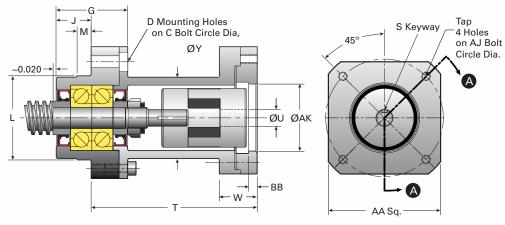
FLANGE MOUNT BEARING SUPPORT WITH MOTOR MOUNT

Flange Mount with motor mount includes an EZZE-MOUNT™ block with a motor mount for easy, accurate installation of ball screw and acme screw assemblies.

Note: When selecting the bearing support for an application with high axial loads, the capacities of the bearings and locknuts must be considered. See page 195.

EZZE-MOUNT" SCREW SUPPORTS

105-RA / Y3 / 4N / 41.87 / 20105 / FS


EZF-3017-34

EXAMPLES OF EZF DESIGNATIONS:

Y1, Y2, Y3, Y4 = Standard Mount available above YX = modified, further description needed (i.e.: Special Frame)

	Ref.	Nema Frame										
Part No.	Code	Ref.	AA	ВВ	Т	U	S	Υ	W	AK	AJ	TAP
EZF-1008-17	Y1	17	1.75	0.25	2.84	0.25	0.094	2.2	0.52	.868/.871	1.725	#8-32
EZF-1009-23	Y2	23	2.50	0.19	3.41	0.38	0.125	2.1	0.88	1.503/1.506	2.625	#10-32
EZF-3010-23	Y2	23	2.50	0.19	3.41	0.38	0.125	2.1	0.88	1.503/1.506	2.625	#10-32
EZF-3012-23	Y2	23	2.50	0.19	3.70	0.38	0.125	1.81	0.88	1.503/1.506	2.625	#10-32
EZF-3012-34	Y3	34	3.25	0.16	4.14	0.50	0.125	1.81	1.31	2.878/2.882	3.875	#10-32
EZF-3015-23	Y2	23	2.50	0.19	3.84	0.38	0.125	1.98	0.88	1.503/1.506	2.625	#10-32
EZF-3015-34	Y3	34	3.25	0.16	4.36	0.50	0.125	1.98	1.31	2.878/2.882	3.875	#10-32
EZF-3017-34	Y3	34	3.25	0.16	4.62	0.50	0.125	2.25	1.67	2.878/2.882	3.875	#10-32
EZF-3017-42	Y4	42	4.50	0.19	5.37	0.63	0.188	2.25	2.41	2.504/2.508	5.000	1/4"-20
EZF-2020-34	Y3	34	3.44	0.16	4.92	0.50	0.125	2.37	1.67	2.878/2.882	3.875	#10-32
EZF-2020-42	Y4	42	4.50	0.19	5.67	0.63	0.188	2.37	2.41	2.504/2.508	5.000	1/4"-20
EZF-3025-34	Y3	34	4.00	0.16	5.24	0.50	0.125	3.00	1.67	2.878/2.882	3.875	#10-32
EZF-3025-42	Y4	42	4.50	0.19	5.98	0.63	0.188	3.00	2.41	2.504/2.508	5.000	1/4"-20
EZF-2030-34	Y3	34	4.00	0.16	5.78	0.50	0.125	3.00	1.67	2.878/2.882	3.875	#10-32
EZF-2030-42	Y4	42	4.50	0.19	6.53	0.63	0.188	3.00	2.41	2.504/2.508	5.000	1/4"-20
EZF-2030-56	Y5	56C	6.63 dia.	0.19	6.60	0.63	0.188	3.00	2.42	4.502/4.506	5.875	0.41 dia. thru
EZF-3045-56	Y5	56C	6.63 dia.	0.19	7.54	0.63	0.188	4.50	2.50	4.502-4.506	5.875	0.41 dia. thru

SECTION A-A

PRECISION BALL SPLINE ASSEMBLY TECHNICAL INTRODUCTION204-209
Glossary and Technical Data204-207
Lubrication and Maintenance207
Life Expectancy and Critical Speed Charts208-209
INCH BALL SPLINE TECHNICAL DATA210-213
0375-3-0156 to 1000-6-0187210-211
1500-6-0250 to 2500-6-0312212-213

BALL SPLINES

BALL SPLINETERMS

ACTIVE CIRCUITS -The closed path that the bearing balls follow through the outer race is referred to as a circuit. The number of potential circuits varies with the diameter of the spline shaft. When a circuit is loaded with bearing balls, it is referred to as an "active circuit". PowerTorq™ Ball Splines may have three or six active circuits. (See FIG. 1)

FIG. 1 3 CIRCUIT

RETURN GUIDES - The outer race component through which the bearing balls are recirculated is referred to as the return guide. PowerTorq™ outer races are available with stamped return guides or high performance solid return guides.

BALL CIRCLE DIAMETER - The ball circle diameter is the diameter of the circle generated by the center of the bearing balls when in contact with the inner and outer race.

LAND DIAMETER - The land diameter is the outside diameter of the inner race. This diameter is less than the ball circle diameter.

ROOT DIAMETER - The root diameter is the diameter of the inner race measured at the bottom of the groove. This is the diameter used for

critical speed calculations.

STRAIGHTNESS - Although PowerTorq™ Ball Splines are manufactured from straight, cylindrical material, internal stresses may cause the material to bend. When ordering random lengths or cut material without end machining, straightening is recommended. Handling or machining of splines can also cause the material to bend. Before, during and after machining, additional straightening may be required.

When ordering splines with machined ends from Nook Industries, the following straightness tolerances can be expected:

PowerTorq[™] Ball Splines are straight within .010 in/ft when shipped from the factory, and do not exceed .030 inch in any 6 foot section. Twist is limited to .015 in/ft at the ball circle diameter.

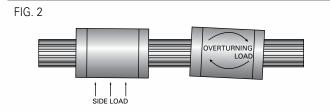
LIFE - A ball spline assembly uses rolling elements to carry a load similar to an anti-friction (ball) bearing. These elements do not wear when properly lubricated during normal use. Therefore, ball spline life is predictable and is determined by calculating the fatigue failure of the components.

Proper lubrication, regular maintenance, and operation within specified limits will allow PowerTorq[™] Ball Splines to operate to the predicted life. See page 209 for life calculations.

FRICTION - The use of rolling elements in a PowerTorq[™] Ball Spline result in a low coefficient of friction.

ROTATIONAL LASH - Backlash or lash is the relative rotational movement of an outer race with no rotation of the inner race (or vice versa). Rotational backlash for the PowerTorq[™] Ball Splines is limited to a range of .005" to .009" at the ball circle diameter.

SELECTIVE FIT - When less than standard lash is required and a preloaded outer race cannot be used, outer races can be custom-fit to a specific inner race with bearing balls selected to minimize rotational (angular) lash.


LOAD DEFINITIONS

DYNAMIC TORQUE LOAD - The torque load which, when applied to the ball spline assembly, will allow a minimum life of 1,000,000 inches of travel.

STATIC TORQUE LOAD - The maximum torque load (including shock) that can be applied to the spline assembly without damaging the assembly.

OVERTURNING LOAD - A load that rotates the outer race around the longitudinal axis of the inner race. (See FIG. 2)

SIDE LOAD - A load that is applied radially to the outer race. (See FIG. 2)

CAUTION - Although a side load will not prevent the ball spline from operating, the outer race is not designed to operate with a side load, such as those generated from pulleys, drive belts or misalignment.

OPTIONAL STANDARD KEYWAYS - Typically, outer races are mounted by machining a keyway into the outer race, inserting a key, and then sliding the outer race into a keyed bore. Standard machined keyways are available. See product pages 210-213 for details.

TRANSFERRING OUTER RACES FROM SHIPPING ARBOR

STANDARD RACES

PowerTorq[™] Ball Spline outer races are shipped on arbors. Transferring the outer race from the arbor to the ball spline can be achieved by placing the arbor against the end of the spline and carefully sliding the outer race onto the inner race.

If the I.D. of the arbor is not able to slip over the O.D. of the end journal, apply tape to the journal to bring the O.D. up to the root diameter. The outer race can then be transferred across the taped journal onto the ball spline.

CAUTION - Removal of the arbor from the outer race will result in the loss of the bearing balls.

NOTE: The set screw is used for transportation only and needs to be completely removed after installation.

POWERTORQ™ MATERIAL SPECIFICATION

PowerTorq[™] inner races are made of high quality 4150 alloy steel, induction hardened to Rc 56-60. PowerTorq[™] outer races are made of hardened steel with ball tracks heat treated to Rc 56-60. PowerTorq[™] ball spline inner and outer races are protected with a black oxide finish.

2D/3D CAD ONLINE

GLOSSARY AND TECHNICAL DATA

LUBRICATION - Proper and frequent lubrication must be provided to achieve predicted service life. A 90% reduction in the ball spline life should be anticipated when operating without lubricants.

Standard lubrication practices for antifriction bearings should be followed when lubricating ball splines. A light oil or grease (lithiumbased) is suitable for most applications. Lubricants containing solid additives such as molydisulfide or graphite should not be used.

E-900 Ball Screw Lubricant is oil that has been developed specifically for ball screws and ball splines and is available as a spray or liquid.

Lubrication intervals are determined by the application. It is required that spline assemblies are lubricated often enough to maintain a film of lubricant on the inner race.

TEMPERATURE - PowerTorq[™] Ball Splines will operate between -65°F and 300°F with proper lubrication.

END MACHINING - To obtain optimum performance of your ball spline assembly, it is recommended that the machining be performed at the Nook Industries factory. Splines may be purchased machined to your specifications.

Annealed ends can be provided on precision ball splines to facilitate end machining of journals.

END FIXITY - End fixity refers to the method by which the ends of the spline are supported. See the Ball Screw technical section for a further explanation of end fixity, page 66-67.

CRITICAL SPEED - The speed that excites the natural frequency of the spline inner race is referred to as the critical speed. Resonance at the natural frequency of the inner race will occur regardless of orientation (vertical, horizontal, etc.).

The critical speed will vary with the diameter, unsupported length, end fixity and rpm. Since critical speed can also be affected by shaft straightness and assembly alignment, it is recommended that the maximum speed be limited to 80% of the calculated valve. The formula used to calculate critical speed is found on page 208. The critical speed chart can also be used to quickly determine the minimum diameter.

E-900 LUBRICANT

E-900 Ball Screw Lubricant protects against inter-ball friction, wear, corrosion, and oxidation. E-900 Ball Screw Lubricant may be used on PowerTorg™ Ball Splines. E-900 will provide a lasting film for wear protection and resistance to corrosion. With an operating range of -65° to +375°F, E-900 has low rolling friction characteristics and helps reduce inter-ball friction in ball spline assemblies.

For optimum results, the ball spline assembly should be in good repair and free of dirt and grease. Used regularly, E-900 will extend the life of ball spline assemblies. It should be applied generously on the entire length of the spline.

E-900 SPRAY CAN

PART NAME	E-900
NET CONTENTS PER UNIT	12 oz.
PART # NLU-1003	
	weight of 1 lb
PART # NLU-2003	1 CASE
	with 12 cans - total weight
	of 13 lb

E-900 LIQUID

PART NAME	E-900L
PART # NLU-1004	1 BOTTLE weight of 32 oz.
PART # NLU-2004	1 CASE with 12 quarts - total weight of 25 lb 5 oz.

6000 4000 3600 3200 2800 2400 2000 1600 1400 Speed (RPM) 1200 1000 800 600 400 360 320 280 240 200 54 72 12 18 24 30 36 42 48 60 66 50 90 В 30 60 70 80 100 110 120 10 20 40 С 12 24 36 48 61 73 85 97 109 121 D 15 30 60 75 90 105 119

Maximum Length (Inches) Between Bearings and Load

See page 66-67 for a description on A-B-C-D end fixity.

The final factor to verify is the critical speed. The following formula is used to calculate critical speed in r.p.m.

 $N = \frac{C_s \times 4.76 \times 10^{-6} \times d}{L^2}$

Where N = Critical speed

d = Root diameter of inner race

= Length between bearing supports

CS = .36 for one end fixed, one end free

1.00 for both ends simple

1.47 for one end fixed,

1.47 101 0110 0110 1

one end simple 2.23 for both ends fixed

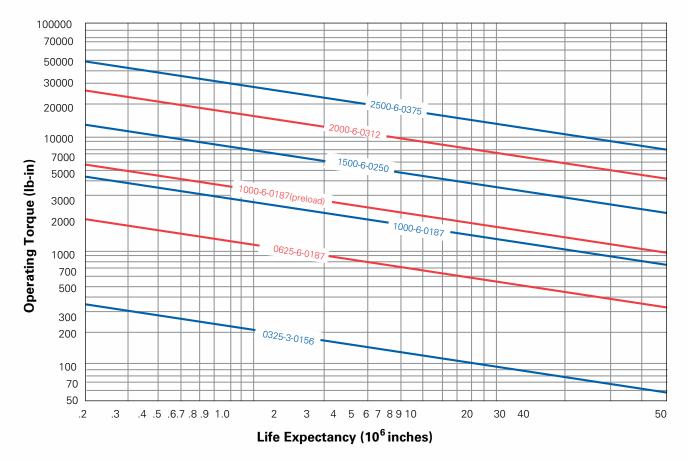
Critical speed can also be affected by shaft straightness and assembly alignment, it is recommended the maximum speed be limited to 80% of the calculated value.

To use this chart:

[1] Determine the maximum RPM.

[2] Determine the maximum length between bearings.

[3] Determine end fixity.


[4] Find point at which length and speed intersect.

[5] Choose spline direction to the right or above the intersecting point.

LIFE EXPECTANCY: PRECISION BALL SPLINES

The selection of the correct inner and outer race involves two interrelated factors. A change in one may affect the other. Before attempting to choose the size of a ball spline, the designer must know the equivalent

torque measured in pound-inches, the required life measured in linear inches of travel, speed measured in revolutions per minute and length between bearing supports measured in inches.

Use the chart to determine the correct size spline which will give the life required at the equivalent torque. The chart relates life to torque.

When the torque is relatively constant over the entire stroke, use the highest torque value to select an outer race. For applications where the torques vary significantly, an equivalent torque can be calculated using the following formula:

$$T_{m} = -\frac{\sqrt[3]{(T_{1})^{3} + \sqrt[3]{(T_{2})^{3} + \sqrt[3]{(T_{3})^{3} + ... + \sqrt[3]{(T_{n})^{3}}}}}{100}$$
WHERE:
$$T_{m} = \text{ equivalent load}$$

$$T_{n} = \text{ each increment of load}$$

$$\%_{n} = \text{ percent of stroke at load }_{n}^{T}$$
FOR EXAMPLE:
$$T_{1} = 150 \text{ pound-inch}$$

$$T_{2} = 225 \text{ pound-inch}$$

$$T_{3} = 725 \text{ pound-inch}$$

T = 466 pound-inch

The life required is determined by multiplying the total stroke in inches by the total number of strokes required for the designed life of the equipment.

To use this chart:

- [1] Determine required life (in million inches of travel).
- [2] Find point at which torque and life requirement intersect.
- [3] Select spline to the right or above the intersect point.

	Outer Race Number	Active Circuit	e ts Performance	Dynamic Torque (in-lb)	Static Torque (in-lb)	Optional Keyway	OuterRace Wt. (lb)	Balls per outer race	Ball Return	Max custom inner race leng	Nominal th size (in)	Root Dia. (in)	Nominal Ball Dia. (in)	Inner Race Wt. (lb/ft)	-
0375-3-0156 0.375 Nominal Size (in) 0.156 Nominal Ball Dia (in)	HPR6900	3	high performance	200	656	³ / ₁₆ × ³ / ₃₂ × 1	0.32	54	Cast	2'	0.375	0.200	0.156	0.310	1.100 - 1.100 - 1.161 Dia.
0625-6-0187 0.625 Nominal Size (in) 0.187 Nominal Ball Dia (in)	HPR8943	6	high performance	1770	3540	½ × ⅓ × 1.125	0.98	120	Cast	4'	0.625	0.425	0.187	1.400	1.505 - 1.531 Dia.
1000-6-0187 1.000 Nominal Size (in) 0.187 Nominal Ball Dia (in)	HPR8944	6	high performance	2600	7880	½ × ½ × 1.625	4.00	156	Cast	12′	1.000	0.800	0.187	2.200	2.068 ———————————————————————————————————

STANDARD INNER RACE LENGTHS

	375-3-0156	0625-6-0187	1000-6-0187
2 ft	SRR7547	_	<u> </u>
4 ft	_	SRR7548	SRR6068
8 ft	_	_	SRR6076
12 ft	_	_	SRR6084
12 11			Shhou64

For longer lengths, contact Customer Service.

POWER•TORQ** PRECISION BALL SPLINES

															_
	Outer Race Number		Performance	Dynamic Torque (in-lb)	Static Torque (in-lb)	Optional Keyway	Outer race wt (lb)	Balls per outer race	Ball Return	Max custom inner race length	Nominal size (in)	Root Dia (in)		Inner Race Wt. (lb/ft)	
1500-6-0250 1.500 Nominal Size (in) 0.250 Nominal Ball Dia (in)	SOR8945	6	standard	8,400	23,170	% × ¾16 × 2.00	3.42	168	Stamped	12'	1.500	1.250	0.250	5.25	3.005 - 2.693 Dia 2.692 Dia
	HPR8945	6	high performance	8,400	23,170	% × ⅓ ₁₆ × 2.00	4.00	168	Cast	12'	1.500	1.250	0.250	5.25	3.005 - 3.005 - 3.745 Ref 2.693 Dia
2000-6-0312 2.000 Nominal Size (in) 0.312 Nominal Ball Dia (in)	HPR8946	6	high performance	16,000	40,270	½ × ½ × 2.50	4.48	144	Cast	12'	2.000	1.670	0.312	9.90	3.130 () 4.130 Ref. 4.130 Ref. 3.427 Dia.
2500-6-0375 2.500 Nominal Size (in) 0.375 Nominal Ball Dia (in)	HPR8947	6	high performance	27,000	62,250	½ × ¼ 3.00	6.60	132	Cast	12'	2.500	2.100	0.375	15.80	3.380 4.170 Dia.

STANDARD INNER RACE LENGTHS

	1500-3-0250 1500-6-0250	2000-3-0312 2000-6-0312	2500-3-0375 2500-6-0375
4 ft	SRR6372	SRR6420	SRR6468
8 ft	SRR6380	SRR6428	SRR6476
12 ft	SRR6388	SRR6436	SRR6484

For longer lengths, contact Customer Service.

Also find us at:

